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1
Introduction

I wish to begin by explaining why this book has been written. Peter Fleming, 
in writing about his travels in Russia and China in 1933, put the need for 
such an explanation this way:

With the possible exception of the Equator, everything begins some-
where. Too many of those who write about their travels plunge straight 
in medias res; their opening sentence informs us bluntly and dramatically 
that the prow (or bow) of the dhow grated on the sand, and they stepped 
lightly ashore. No doubt they did. But why? With what excuse? What 
other and anterior steps had they taken? Was it boredom, business, or a 
broken heart that drove them so far afield? We have a right to know.

Peter Fleming
One’s Company (1934)

In 2003, I wrote in the first edition of this book: “At the time of writing this 
introduction, the President of the United States, George W. Bush, has already 
rejected the Kyoto Agreement on the control of greenhouse gas emissions; 
European leaders appear to be in a dither and ecowarriors alongside anti-
capitalists have again clashed with riot police in the streets.” A key change 
since then has been the Stern Review (Stern, 2006) on the economics of cli-
mate change. The likely environmental impact of climate change trajecto-
ries—rising sea levels permanently displacing millions of people, declining 
crop yields, more than a third of species facing extinction—had already been 
well rehearsed. What had not been adequately quantified and understood 
was the likely cost to the global economy (a 1% decline in economic output 
and 4% decline in consumption per head for every 1°C rise in average tem-
perature) and that the cost of stabilizing the situation would cost about 1% of 
gross domestic product (GDP). It seemed not too much to pay, but attention 
is now firmly focused on the “credit crunch”’ and the 2008 collapse of the 
financial sector. In the meantime, annual losses in natural capital worth from 
deforestation alone far exceed the losses of the current recession, severe as 
it is. Will it take ecological collapse to finally focus our attention on where 
it needs to be? This book has been written because, like most of its readers, 
I have a concern for the quality of world we live in, the urgent need for its 
maintenance and where necessary, its repair. In this book I set out what I 
believe is a key approach to problem solving and conflict resolution through 
the analysis and modeling of spatial phenomena. Whilst this book alone will 
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perhaps not safeguard our world, you the reader on finishing this book will 
have much to contribute.

The phrase quality of world used above has been left intentionally broad, 
even ambiguous. It encompasses:

Our natural environment—climate, soils, oceans, biological life •	
(plants, animals, bacteria)—that can both nurture us and be hazards 
to us.
The built environment that we have created to protect and house •	
ourselves and to provide a modified infrastructure within which we 
can prosper.
The economic environment that sustains our built environment and •	
allows the organization of the means of production.
The social, cultural, and legal environments within which we con-•	
duct ourselves and our interactions with others.

These environments are themselves diverse, continually evolving and 
having strong interdependence. Each of them varies spatially over the face 
of the globe mostly in a transition so that places nearer to each other are 
more likely to be similar than those farther apart. Some abrupt changes do, 
of course, happen, as, for example, between land and sea. They also change 
over time, again mostly gradually, but catastrophic events and revolutions do 
happen. Together they form a complex mosaic, the most direct visible mani-
festation being land cover and land use—our evolved cultural landscapes. 
Furthermore, the interaction of these different aspects of environment gives 
enormous complexity to the notion of “quality of life” for our transient 
existence on Earth. Globalization may have been a force for uniformity in 
business and consumerism, but even so businesses have had to learn to be 
spatially adaptive, so-called glocalization. When it comes to managing and 
ameliorating our world for a sustainable quality of life, there is no single goal, 
no single approach, no theory of it all. Let’s not fight about it. Let us celebrate 
our differences and work toward a common language of understanding on 
how we (along with the rest of nature) are going to survive and thrive.

Metaphors of Nature

We often use metaphors as an aid in understanding complexity, none more so 
perhaps than in understanding nature and our relationship within it. These 
metaphors are inevitably bound up in philosophies of the environment, or 
knowledge of how the environment works and the technology available to 
us to modify/ameliorate our surrounding environment. Thus, for millennia, 
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environmental knowledge was enshrined in folklore derived from the trial 
and error experiences of ancestors. Archaeology has revealed patterns of site 
selection that changed as we developed primitive technologies or adapted to 
new environments. Places for habitation had to satisfy the needs for water, 
food, raw materials, shelter, and safety, and humans learned to recognize those 
sites that offered the greatest potential for their mode of existence. Examples 
are numerous: caves near the feeding or watering places of animals; Neolithic 
cultivation of well-drained, easily worked river terraces; early fishing com-
munities on raised beaches behind sheltered bays and so on. Undoubtedly 
mistakes were made and communities decimated, but those that survived 
learned to observe certain environmental truths or inevitabilities.

Successful early civilizations were those that had social structures that 
allowed them to best use or modify the landforms and processes of their 
physical environment. Thus, the Egyptians, Mesopotamians, and Sumerians 
devised irrigation systems to regulate and distribute seasonally fluctuating 
water supplies, while the Chinese and Japanese included widespread terrac-
ing as a means of increasing the amount of productive land. More than 2,500 
years ago, the Chinese developed the Taoist doctrine of nature, in which the 
Earth and the sky had their own “way” or “rule” to maintaining harmony. 
Human beings should follow and respect nature’s way or risk punishment 
in the form of disasters from land and sky. Thus, even at that time there were 
laws governing, for example, minimum mesh size on fishing nets so that fish 
would not be caught too young. Of course, our stewardship has not always 
been a continual upward journey of success. Some human civilizations have 
collapsed spectacularly through environmental impact and loss of natural 
resources (Tickell, 1993; Diamond, 2005). These disasters aside, the dominant 
metaphor was of “Mother Earth”: a benevolent maker of life, a controlling 
parent that could provide for our needs, scold us when we erred, and, when 
necessary, put all things to right.

The industrial revolution allowed us to ratchet up the pace of develop-
ment. Early warnings of the environmental consequences, such as from 
Marsh (1864), were largely ignored as the Victorians and their European 
and North American counterparts considered themselves above nature in 
the headlong rush to establish and exploit dominions. Our technologies 
have indeed allowed us to ameliorate our lifestyle and modify our environ-
ment on an unprecedented scale—on a global scale. But, from the 1960s, the 
cumulative effect of human impact on the environment and our increasing 
exposure to hazard finally crept onto the agenda and remains a central issue 
today. The rise of the environmental movement brought with it a new meta-
phor—Spaceship Earth—that was inspired by photos from the Apollo moon 
missions of a small blue globe rising above a desolate moonscape. We were 
dependant on a fragile life-support system with no escape, no prospect of res-
cue, if it were to irreparably break down. This coincided with the publication 
of seminal works, such as Rachel Carson’s (1963) Silent Spring, which exposed 
the effects of indiscriminate use of chemical pesticides and insecticides; 
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McHarg’s (1969) Design with Nature, which exhorted planners and designers 
to conform to and work within the capacity of nature rather than compete 
with it; and Schumacher’s (1973) Small Is Beautiful proposed an economics 
that emphasized people rather than products and reduced the squandering 
of our “natural capital.” The words fractal, chaos, butterfly effect, and complexity 
(Mandelbrot, 1983; Gleick, 1987; Lewin, 1993; Cohen and Stewart, 1994) have 
since been added to the popular environmental vocabulary to explain the 
underlying structure and workings of complex phenomena. Added to these 
is the Gaia hypothesis (Lovelock, 1988) in which the Earth is proposed to have 
a global physiology or may in fact be thought of as a superorganism capable 
of switching states to achieve its own goals in which we humans may well be 
(and probably are) dispensable organisms.

A Solution Space?

That we are capable of destroying our life support system is beyond doubt. 
As a species, we have already been responsible for a considerable number 
of environmental disasters. If I scan the chapter titles of Goudie’s (1997) The 
Human Impact Reader, the list becomes long indeed, including (in no par-
ticular order): subsidence, sedimentation, salinization, soil erosion, desic-
cation, nutrient loss, nitrate pollution, acidification, deforestation, ozone 
depletion, climate change, wetland loss, habitat fragmentation, and deser-
tification. I could go on to mention specific events, such as Exxon Valdez, 
Bhopal, and Chernobyl, but this book is not going to be a catalog of dire 
issues accompanied by finger-wagging exhortations that something must be 
done. Nevertheless, worrying headlines continue to appear, such as: “Just 
100 months left to save the Earth” for a piece on how greenhouse gases may 
reach a critical level or tipping point beyond which global warming will 
accelerate out of control (Simms, 2008). One can be forgiven for having an air 
of pessimism; the environment and our ecosystems are definitely in trouble. 
But, we are far from empty-handed. We have a rich heritage of science and 
engineering, a profound knowledge of environmental processes and expe-
rience of conservation and restoration. The technologies that have allowed 
humankind to run out of control in its impact on the environment can surely 
be harnessed to allow us to live more wisely. Our ingenuity got us here and 
our ingenuity will have to get us out of it.

As stated above, we need a common language and, in this regard, we have 
some specific technologies—drawing upon science—that can facilitate this. 
While humankind has long striven to understand the workings of the envi-
ronment, it has only been in the past 30 years or so that our data collection 
and data processing technologies have allowed us to reach a sufficiently 
detailed understanding of environmental processes so as to create simulation 
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models. I would argue that it is only when we have reached the stage of suc-
cessful quantitative simulation, can our level of understanding of processes 
allow us to confidently manage them. This is the importance of environmental 
modeling. Facilitated by this in a parallel development has been environmental 
engineering. Engineering also has a rich history, but while traditionally engi-
neering has focused on the utilization of natural resources, environmental 
engineering has recently developed into a separate discipline that focuses 
on the impact and mitigation of environmental contaminants (Nazaroff and 
Alvarez-Cohen, 2001). While most management strategies arising out of envi-
ronmental modeling will usually require some form of engineering response 
for implementation, environmental engineering provides solutions for man-
aging water, air, and waste. Engineering in the title of this book refers to the 
need to design workable solutions; such designs are often informed by com-
putational or simulation modeling. The youngest technology I would like to 
draw into this recipe for a common language is geographic information systems 
(GIS). Because environmental issues are inherently spatial—they occur some-
where, often affecting a geographic location or area—their spatial dimension 
needs to be captured if modeling and engineering are to be relevant in solv-
ing specific problems or avoiding future impacts. GIS have proved successful 
in the handling, integration, and analysis of spatial data and have become an 
easily accessible technology. While the link between simulation modeling and 
engineering has been longstanding, the link between GIS and these technolo-
gies is quite new, offers tremendous possibilities for improved environmental 
modeling and engineering solutions, and can help build these into versatile 
decision support systems for managing, even saving our environment. And 
that is why I have written this book.

Scope and Plan of This Book

From the early 1990s onwards, there has been an accelerating interest in the 
research and applications of GIS in the field of environmental modeling. 
There have been a few international conferences/workshops on the subject—
most notably the series organized by the National Center for Geographic 
Information and Analysis (NCGIA), University of California, Santa Barbara 
in 1991, 1993, 1996, and 2000—and have resulted in a number of edited collec-
tions of papers (Goodchild et al., 1993; 1996; Haines-Young et al., 1993; NCGIA, 
1996; 2000) as well as a growing number of papers in journals, such as the 
International Journal of Geographical Information Science, Transactions in GIS, 
Hydrological Processes, Computers Environment and Urban Systems, ASCE Journal 
of Environmental Engineering, Photogrammetric Engineering and Remote Sensing, 
Computers and Geosciences, and so on. But, working with GIS and environ-
mental simulation models is not just a case of buying some hardware, some 
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software, gathering some data, putting it all together and solving problems 
with the wisdom of a sage. While technology has simplified many things, 
there still remain many pitfalls, and users need to be able to think critically 
about what they are doing and the results that they get from the technology. 
Thus, the overall aim of this book is to provide a structured, coherent text that 
not only introduces the subject matter, but also guides the reader through a 
number of specific issues necessary for critical usage. This book is aimed at 
final-year undergraduates, postgraduates, and professional practitioners in 
a range of disciplines from the natural sciences, social sciences to engineer-
ing, at whatever stage in their lifelong learning or career they need or would 
like to start working with GIS and environmental models. The focus is on 
the use of these two areas of technology in tandem and the issues that arise 
in so doing. This book is less concerned with the practicalities of software 
development and the writing of code (e.g., Payne, 1982; Kirkby et al., 1987; 
Hardisty et al., 1993; Deaton and Winebrake, 2000; Wood, 2002). Nor does it 
consider in detail data collection technologies, such as remote sensing, GPS, 
data loggers, and so on, as there are numerous texts that already cover this 
ground (e.g., Anderson and Mikhail, 1998; Skidmore, 2002).

The overall thrust of this book can be summarized in the mapping:

 ƒ: Ω → ℜ (1.1)

where Ω = set of domain inputs, ℜ = set of real decisions. In other words, 
all decisions (including the decision not to make a decision) should be ade-
quately evidenced using appropriate sources of information. This is perhaps 
stating the obvious, but how often, in fact, is there insufficient information, a 
hunch, or a gut feeling? GIS, environmental modeling, and engineering are 
an approach to generating robust information upon which to make decisions 
about complex spatial issues.

The subject matter is laid out in three sections. Section I concentrates 
uniquely on GIS: what they are, how data are structured, what are the most 
common types of functionality. GIS will be viewed from the perspective of 
a technology, the evolution of its scientific basis, and, latterly, its synergies 
with other technologies within a geocomputational paradigm. This is not 
intended to be an exhaustive introduction as there are now many textbooks 
that do this (e.g., Chrisman, 1997; Burrough and McDonnell, 1998; Longley 
et al., 2005; Heywood et al., 2006) as well as edited handbooks (e.g., Wilson 
and Fotheringham, 2008). Rather, its purpose is to lay a sufficient founda-
tion of GIS for an understanding of the substantive issues raised in Section 
III. Section II similarly focuses on modeling both from a neutral scientific 
perspective of its role in simulating and understanding phenomena and 
from a more specific perspective of environmental science and engineering. 
Section III is by far the largest. It looks at how GIS and simulation modeling 
are brought together, each adding strength to the other. There are examples 
of case studies and chapters covering specific issues, such as interoperability, 
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data quality, model validity, space-time dynamics, and decision-support 
systems. Those readers who already have a substantial knowledge of GIS 
or have completed undergraduate studies in GIS may wish to skip much of 
Section I and move quickly to Sections II and III. Those readers from a simu-
lation modeling background in environmental science or engineering should 
read Section I, skim through Section II, and proceed to Section III. In a book 
such as this, it is always possible to write more about any one topic; there are 
always additional topics that a reader might consider should be added. There 
are, for example, as many environmental models as there are aspects of the 
environment. GIS, environmental modeling, and engineering are quite end-
less and are themselves evolving. Also, I have tried not to focus on any one 
application of simulation modeling. Given its popularity, there is a tempta-
tion to focus on GIS and hydrology, but that would detract from the overall 
purpose of this book, which is to focus on generic issues of using GIS and 
external simulation models to solve real problems. Presented in the following 
chapters is what I consider to be a necessary understanding for critical think-
ing in the usage of such systems and their analytical outputs. Enjoy.
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2
From GIS to Geocomputation

The cosmological event of the Big Bang created the universe and in so doing 
space–time emerged (some would say “switched on”) as an integral aspect of 
gravitational fields. Space and time are closely interwoven and should more 
properly be thought of as a four-dimensional (4D) continuum in which time 
and space, over short durations, are interchangeable. Nevertheless, we con-
ventionally think of separate one-dimensional (1D) time and three-dimen-
sional (3D) space. The terrestrial space on which we live, the Earth, is at least 
4.5 billion years old and has been around for about 40% of the time since 
time began. Since our earliest prehistory, we have grappled with the prob-
lems of accurately measuring time and space. Crude measures of time prob-
ably came first given the influences of the regular cycles of the day, tides, the 
moon, and seasons on our lives as we evolved from forager to agriculturist. 
With technology, we have produced the atomic clock and the quartz watch. 
Measuring position, distances, and area were less obvious in the absence of 
the type of benchmark that the natural cycles provided for time. Early mea-
surements used a range of arbitrary devices—the pace, the pole, the chain—
and longer distances tended to be equated with the time it took to get to 
destinations. Much later, the development of accurate clocks was the key to 
solving the problem of determining longitudinal position when coupled with 
observations of the sun. Measurement requires numerical systems, and 1D 
time requires either a linear accumulation (e.g., age) or a cyclical looping (e.g., 
time of day). Measurement of 3D space requires the development of higher 
order numerical systems to include geometry and trigonometry. Let us not 
forget that at the root of algebra and the use of algorithms was the need for 
precise partitioning of space (land) prescribed by Islamic law on inheritance. 
Calculus was developed with regard to the changing position (in time) of 
objects in space as a consequence of the forces acting upon them.

Three fundamental aspects of determining position are: a datum, a coor-
dinate system (both incorporating units of measurement), and an adequate 
representation of the curved (or somewhat crumpled) surface of the Earth in 
the two dimensions of a map, plan, or screen. The establishment of a datum 
and coordinate system is rooted in geodetic surveying, which aims to pre-
cisely determine the shape and area of the Earth or a portion of it through 
the establishment of wide-area triangular networks by which unknown loca-
tions can be tied into known locations. Cartographers aim to represent geo-
graphic features and their relationships on a plane. This involves both the 
art of reduction, interpretation, and communication of geographic features 
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and the science of transforming coordinates from the spherical to a plane 
through the construction and utilization of map projections. The production 
of quality spatial data used to be a time-consuming, expensive task and for 
much of the twentieth century there was a spatial data “bottleneck” that 
held back the wider use of such data. Technology has provided solutions 
in the form of the global positioning system (GPS), electronic total stations, 
remote sensing (RS), digital photogrammetry, and geographic information 
systems (GIS). GPS, RS, and GIS are now accessible to every citizen through 
inexpensive devices and the Internet. Determining where is no longer dif-
ficult and, through mobile devices such as GPS-enabled smartphones, deter-
mining one’s geographic position and location has become no more difficult 
than telling the time.

This chapter will chart the rise of the GIS as a technology, consider its main 
paradigms for representing the features of the Earth and structuring data 
about them. The basic functionality of GIS will be described with examples. 
A “systems” view of GIS will then be developed bringing us to the point 
where GIS can be formally defined. The limitations of modern GIS will be 
discussed leading us to consider the rise of geocomputation as a new para-
digm and the role of GIS within it.

In the Beginning …

It would be nice to point to a date, a place, an individual and say, “That’s 
where it all started, that’s the father of GIS.” But no. As Coppock and Rhind 
put it in their article on the History of GIS (1991), ”unhappily, we scarcely 
know.” In the beginning, of course, there were no GIS “experts” and nobody 
specifically set out to develop a new body of technology nor a new scientific 
discipline for that matter. In the mid-1960s, there were professionals from 
a range of disciplines, not many and mostly in North America, who were 
excited by the prospect of handling spatial data digitally. There were three 
main focal points: the Harvard Graduate School of Design, the Canada Land 
Inventory, and the U.S. Census Bureau. In each of these organizations were 
small groups of pioneers who made important contributions toward laying 
the foundations for today’s GIS industry.

The significance of the Harvard Graduate School of Design lies in its 
Laboratory for Computer Graphics and Spatial Analysis, a mapping pack-
age called SYMAP (1964), two prototype GIS, called GRID (1967), and 
ODYSSEY (c. 1978), and a group of talented individuals within the labora-
tory and the wider graduate school: N. Chrisman, J. Dangermond, H. Fisher, 
C. Steinitz, D. Sinton, T. Peucker, and W. Warntz, to name a few. The cre-
ator of SYMAP was Howard Fisher, an architect. His use of line printers 
to produce three types of map—isoline, choropleth, and proximal—was a 
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way of visualizing or recognizing spatial similarities or groupings in human 
and physical phenomena (McHaffie, 2000). The other leap was a recognition 
(rightly or wrongly) that just about any such phenomenon, no matter how 
ephemeral or whether described quantitatively or qualitatively could be rep-
resented as a map of surfaces or regions. The printing of these maps using 
equally spaced characters or symbols, line by line, naturally resulted in a 
“blocky,” cell-based map representation (Figure 2.1). David Sinton, a land-
scape architect, took cell-based (raster) mapping forward with GRID, which 
allowed analyses to include several thematic data sets (layers) for a given 
area. Furthermore, by 1971 a rewrite of GRID allowed users to define their 
own logical analyses rather than being restricted to a limited set of prepack-
aged procedures. Thus, a flexible user interface had been developed. By the 
late 1970s, ODYSSEY, a line-based (vector) GIS prototype had been written 
capable of polygon overlay. In this way, it can be seen that the overlay or co-
analysis of several thematic layers occupied the heart of early GIS software 
strategies (Chrisman, 1997).

In 1966, the Canada Geographic Information System (CGIS) was initiated 
to serve the needs of the Canada Land Inventory to map current land uses 
and the capability of these areas for agriculture, forestry, wildlife, and recre-
ation (Tomlinson, 1984). Tomlinson had recognized some years earlier that 
the manual map analysis tasks necessary for such an inventory over such a 
large area would be prohibitively expensive and that a technological solution 
was necessary. Within this solution came a number of key developments: 
optical scanning of maps, raster to vector conversion, a spatial database man-
agement system, and a seamless coverage that was nevertheless spatially 
partitioned into “tiles.” The system was not fully operational until 1971, but 

Figure 2.1
Sample of a SYMAP-type line printer contour map showing emphasis on similarities. The con-
tour lines are perceived only through the “gap” between the areas of printed symbols.
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has subsequently grown to become a digital archive of some 10,000 maps 
(Coppock and Rhind, 1991).

The significance of the U.S. Bureau of Census in developing its Dual 
Independent Map Encoding (DIME) scheme in the late 1960s is an early 
example of inserting additional information on spatial relationships into 
data files through the use of topological encoding. Early digital mapping 
data sets had been unstructured collections of lines that simply needed to 
be plotted with the correct symbology for a comprehensible map to emerge. 
But the demands for analysis of map layers in GIS required a structuring 
that would allow the encoding of area features (polygons) from lines and 
their points of intersection, ease identification of neighboring features, and 
facilitate the checking of internal consistency. Thus, DIME was a method 
of describing urban structure, for the purposes of census, by encoding the 
topological relationships of streets, their intersection points at junctions and 
the street blocks and census tracts that the streets define as area features. The 
data structure also provided an automated method of checking the consis-
tency and completeness of the street block features (U.S. Bureau of Census, 
1970). This laid the foundation of applying topology or graph theory now 
common in vector GIS.

Technological Facilitation

The rise of GIS cannot be separated from the developments in information 
and communication technology that have occurred since the 1960s. A time-
line illustrating developments in GIS in relation to background formative 
events in technology and other context is given in Table 2.1. Most students 
and working professionals today are familiar at least with the PC or Mac. I 
am writing the second edition of this book in 2008/09 on a notebook PC (1.2 
GHz CPU, 1 GB RAM, 100 GB disk, wireless and Bluetooth connectivity) no 
bigger or thicker than an A4 pad of paper. My GIS and environmental mod-
eling workhorse is an IBM M Pro Intellistation (dual CPU 3.4 GHz each, 3.25 
GB RAM, 100 GB disk). They both run the same software with a high degree 
of interoperability, and they both have the same look and feel with toolbars, 
icons, and pull-down menus. Everything is at a click of a mouse. I can eas-
ily transfer files from one to the other (also share them with colleagues) and 
I can look up just about anything on the Internet. Even my junk mail has 
been arriving on CD and DVD, so cheap and ubiquitous has this medium 
become, and USB data sticks are routinely given away at conferences and 
exhibitions. It all takes very little training and most of the basic functions 
have become intuitive. I’m tempted to flex my muscles (well, perhaps just 
exercise my index finger) for just a few minutes on the GIS in this laptop … 
and have indeed produced Figure 2.2—a stark contrast to Figure 2.1.
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Table 2.1

Timeline of Developments in GIS in Relation to Background Formative Events in 
Technology and Other Context

Year GIS Context

1962 Carson’s Silent Spring

1963 Canadian Geographic Information System
1964 Harvard Lab for Computer Graphics & 

Spatial Analysis
GPS specification

1966 SYMAP WGS-66
1967 U.S. Bureau of Census DIME
1968 Relational database defined by 

Codd
1969 ESRI, Intergraph, Laser-Scan founded Man on the noon; NEPA; McHarg’s 

Design with Nature
1970 Acronym GIS born at IGU/UNESCO 

conference
Integrated circuit

1971 ERTS/Landsat 1 launched
1973 U.K. Ordnance Survey starts digitizing
1974 AutoCarto conference series; Computers & 

Geosciences
UNIX

1975 C++; SQL
1978 ERDAS founded First GPS satellite launched
1980 FEMA integrates USGS 1:2 m mapping into 

seamless database
1981 Computers, Environment & Urban Systems; 

Arc/Info launched
8088 chip; IBM PC

1983 Mandelbrot’s The Fractal Geometry of 
Nature

1984 1st Spatial Data Handling Symposium 80286 chip, RISC chip; WGS-84
1985 GPS operational
1986 Burrough’s Principles of Geographical 

Information Systems for Land Resources 
Assessment; MapInfo founded

SPOT 1 launched

In
te

rn
et

; m
ob

ile
 

ph
on

es1987 International Journal of Geographical 
Information Systems; GIS/LIS conference 
series; “Chorley” Report

80386 chip

1988 NCGIA; GIS World, U.K. RRL initiative Berlin Wall comes down
1989 U.K. Association for Geographic Information
1990 Berners–Lees launches WWW
1991 USGS digital topo series complete

1st International Symposium on Integrating 
GIS and Environmental Modeling

Dissolution of Soviet Union

1992 Rio Earth Summit – Agenda 21
1993 GIS Research U.K. conference series Pentium chip; full GPS constellation
1994 Open GIS Consortium HTML

Continued
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To fully comprehend the technological gulf we have crossed, let me 
briefly review a late 1970s GIS-based land capability study in South Dakota 
(Schlesinger et al., 1979). The project was carried out on an IBM 370/145 main-
frame computer using 10 standalone program modules written in FORTRAN 
IV and IBM Assembler. A digitizing tablet and graphics terminal were avail-
able, but all hardcopy maps were produced using a line printer. Maps wider 
than a 132-character strip had to be printed and glued together. The study 
area covered 115 km2; size of cell was standardized at one acre (~0.4 ha). With 
the objective to identify land use potential, four base data layers were digi-
tized: 1969 and 1976 land use from aerial photographic interpretation (API), 
soils, and underlying geology from published map sheets. Through a process 

Table 2.1 (Continued )

Timeline of Developments in GIS in Relation to Background Formative Events in 
Technology and Other Context

Year GIS Context

1995 OS finished digitizing 230,000 maps Java
1996 1st International Conference on 

GeoComputation; Transactions in GIS
1997 IJGIS changes “Systems” to “Science”; last 

AutoCarto; Geographical and Environmental 
Modeling

Kyoto Agreement on CO2 reduction

1998 Journal of Geographical Systems; last GIS/LIS GPS selective availability off
2000 “Millennium Bug”
2003 1st ed.: GIS, Environmental Modeling & 

Engineering
2005 Google Maps; Google Earth
2006 Stern Review: The economics of climate 

change
2008 Google Street View

Figure 2.2
Laptop GIS of today: 3-D topographic perspective of a landscape.
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of either reclassification of single layers or a logical combination (overlay) of 
two or more layers with reclassification, a total of 19 new factor maps were 
created (Table 2.2) to answer a range of spatial questions where certain char-
acteristics are concerning land suitability for development. Typical of the 
many pioneering efforts of the time, this study achieved its goals and was 
well received in the community despite the rudimentary hardware and soft-
ware tools available.

Some of the changes are obvious. Over the intervening 30 years, the action 
of Moore’s Law, by which the hardware price to performance ratio is expected 
to double every 18 months, means that the laptop I’m writing on far outstrips 
the IBM mainframe of that time in terms of power, performance, and storage 
by several orders of magnitude at a fraction of the cost in real terms. Instead 
of using a collection of software modules that may need to be modified and 
recompiled to satisfy the needs of the individual project, we have a choice of 
off-the-shelf packages (e.g., MapInfo, ArcGIS) that combine a wide range of 
functionality with mouse- and icon/menu-driven interfaces. For project-spe-
cific needs, most of these packages have object-oriented scripting languages 

Table 2.2

Multiple Layer Production from Three Source Data Sets

Base Maps →
↓ Factor Maps

1969
Land Use

1976
Land Use Soils Geology

Slope 

Flood hazards 

Potential for building sites 

Potential for woodland wildlife habitat 

Potential for rangeland habitat 

Potential for open land habitat 

Limitations to road and street construction 

Limitations for septic tank absorption fields 

Soils of statewide importance for farmland 

Sliding hazards 

Groundwater recharge areas 

Land use change  

Limitations to sewage lagoons  

Important farmland  

Important farmland lost to urban development   

Limitations to urban development  

Land suitable for urban development, but not 
important agricultural land

 

Limitations for septic tanks   

Limitations for new urban development    

Source: Based on Schlesinger, J., Ripple, W., and Loveland, T.R. (1979) Harvard Library of 
Computer Graphics 4: 105–114.
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that facilitate customization and the addition of new functionality with many 
such scripts available over the Internet. Moreover, analysis can now be vastly 
extended to include external computational models that communicate either 
through the scripting or use of common data storage formats. Although the 
availability of digital map data is uneven across the world, particularly when 
it comes to large-scale mapping, off-the-shelf digital data ready for use in GIS 
are much more common today to the point where, certainly for projects in 
North America and Europe, there is hardly the need anymore to manually 
digitize. As mentioned above, the bottleneck in the production of digital spa-
tial data has been burst not only by technologies, such as GPS, RS, and digital 
photogrammetry, but through palm-top data loggers, high-speed scanners, 
digital data transfer standards, and, above all, the computer capacity to cost-
effectively store, index, and deliver huge data sets. In contrast to Table 2.2 
in which only four data sources were used, Figure 2.3 summarizes the 
many input sources and output derivative data sets designed by the British 
Geological Survey in a recent project to build an integrate 3D geological and 
hydrogeological model. This model is to support development in the Thames 
Gateway, U.K., which at the time of writing is Europe’s largest regeneration 
program. Nevertheless, despite the technological advancement that has made 
spatial tools and particular GIS more widespread, sophisticated, and easier to 
use, many of the underlying principles have remained largely the same.
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Figure 2.3
A contemporary geological application using spatial modeling tools. (Adapted from Royse, 
K.R., Rutter, H.K., and Entwisle, D.C. (2009) Bulletin of Engineering Geology and the Environment 
68: 1–16.)
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Representing Spatial Phenomena in GIS

The dominant paradigm in the way GIS data are structured comes from the 
idea that studies of landscape (both human and physical) and the solution to 
problems concerning the appropriate use of land can be achieved by describ-
ing the landscape as a series of relevant factor maps or layers that can then 
be overlaid to find those areas having particular combinations of factors that 
would identify them as most suited to a particular activity. The methodology 
in its modern GIS context derives from the seminal work of McHarg (1969) as 
well as the conventional cartographic tradition of representing spatial phe-
nomena. Although the use of manual overlay of factor maps considerably 
predates McHarg (Steinitz et al., 1976), he provided a compelling case for the 
methodology as a means of organizing, analyzing, and visualizing multiple 
landscape factors within a problem-solving framework. Consider the land-
scape shown in Figure 2.4.

This landscape can be viewed both holistically as a piece of scenery and as a 
series of constituent elements, such as its topography, geology, hydrology, slope 
processes, flora, fauna, climate, and manmade (anthropomorphic) features, to 

Figure 2.4
A view of a sample landscape. (Photo courtesy of the author.)
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name but a number that could be separated out. At any place within this land-
scape there are several or all constituents to be considered: stand on any point 
and it has its topography, geology, hydrology, microclimate, and so on. Any 
comprehensive map of all these constituents would quickly become cluttered 
and complex—almost impossible to work with. So, consider then the mapped 
constituents of a very similar landscape in Figure 2.5(a–i).

Although this particular landscape has been artificially created to demon-
strate a number of issues throughout this book, it illustrates well a number 
of aspects of the layer or coverage paradigm and the graphic primitives used 
in any one layer. First, in order for a selection of layers to be used together, 
superimposed and viewed as a composite, they must all conform to the same 
coordinate system and map projection. This is critically important, otherwise the 
layers will be distorted and wrongly positioned in relation to one another. 
Individual layers, however, need not necessarily cover exactly the same area 
of the landscape in their extent as may happen, for example, if they have been 
derived from different surveys or source documents. Each layer can neverthe-
less be clipped to a specific study area as has happened in Figure 2.5. Second, 
some of the layers are given to represent discrete objects in the landscape (e.g., 
landslides, streams, land cover parcels) while others represent a continuous 
field (e.g., topography, gradient, rainfall), which varies in its value across the 
landscape. What aspects of the landscape should be treated as continuous 
or discrete and how they should be presented cartographically is an old, but 
significant problem, which can still be debated today (Robinson and Sale, 
1969; Peuquet, 1984; Goodchild, 1992a; Burrough, 1992; Burrough and Frank 
1996; Spiekermann and Wegener, 2000; Goodchild et al., 2007). To a consider-
able extent, it is a matter of data resolution, scale of representation, conven-
tion, and convenience. For example, landslides can be quickly mapped at a 
regional level as individual points representing each scar in the terrain (as 
in Figures 2.5(h) and 2.6(a)). Another approach would be to represent each 
landslide as a line starting at the scarp and tracing the down slope extent of 
the debris to the toe (Figure 2.6(b)). Clearly any laterally extensive landslide 
in Figure 2.5(h) would represent a methodological problem for which a sin-
gle point or a line would be an oversimplification. So, yet another approach 
would be to represent either the whole landslide or its morphological ele-
ments according to a consistent scheme (e.g., source, transport, deposition) as 
polygons (Figure 2.6(c)). This latter approach, while providing more informa-
tion, is more time consuming and expensive to produce. Finally, these land-
slides could be represented as a field of varying numbers of landslides within 
a tessellation of cells (Figure 2.6(d)), or as densities (Figure 5.11(a)).

To pursue this issue just a bit further, topography is a continuous field, but 
is conventionally represented by contours that in geometric terms are nested 
polygons. Gradient on the other hand is also a continuous field, but would 
generally be confusing to interpret if drawn as contours and, thus, is usually 
represented by a tessellation of cells, each having its own gradient value. 
Soils are conventionally classified into types and each type is represented 
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Figure 2.5
Mapped constituents of an example landscape in eight layers (coverages): (a) oblique view of 
topography, (b) contours, (c) slope gradient, (d) geology, (e) land cover, (f) rainfall isohyets from 
a storm event, (g) drainage network, (h) landslide scars, (i) transport.
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by discrete polygons wherever they occur. This is despite the fact that many 
boundaries between soil types are really gradations of one dominant char-
acteristic (say, clay content or structure of horizons) to another. Land uses are 
similarly defined as homogenous discrete polygons on the basis of dominant 
land-use type despite perhaps considerable heterogeneity within any poly-
gon. We will return to these issues later in Chapter 8 when we consider the 
implications of this on spatial data quality.

Fundamentally then, any point within a landscape can be viewed as an 
array containing the coordinates of location {x, y} and values/classes for 
n defined attributes a. The first two of these attributes may be specifically 
defined as elevation z and time t. Therefore, the whole landscape L can be 
described by a large number of such points p in a matrix:

 L = 

x1 y1 z1 t1 a14 a15 a1na13

ap3xp yp zp tp ap4 aps apn

 (2.1)

(a) (b)

(c)

1

1

1

(d)

Figure 2.6
Four possible methods of representing landslides in GIS: (a) as points, (b) as lines, (c) as poly-
gons, (d) as a tessellation (raster).
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In practical terms, time t is often fixed and the matrix is taken to be a 
single snapshot of the landscape. Also, because the number of points used to 
describe the landscape is usually only a tiny proportion of all possible points, 
L is considered to be a sample of one. Elevation z is taken to be an attribute 
of a location and, therefore, is not really a third dimension in the traditional 
sense of an {x, y, z} tuple. GIS are commonly referred to as 2½D rather than 
3D. The points themselves can be organized into a series of points, lines, or 
polygons, that is, discrete objects of 0, 1, and 2 dimensions, respectively, to 
form vector layer(s). Usually, objects that are points, lines, and polygons are 
not mixed within a layer, but are kept separate. This describes the planar 
geometry and disposition of the objects within the landscape. The attributes 
of each object are stored in a database (either as flat files or in a relational 
database management system (RDBMS)) and are linked to the graphics via 
a unique identifier (Figure 2.7). The other approach to L is for the landscape 
to be tessellated, that is, split into a space-filling pattern of cells and for each 
cell to take an attribute value according to the distribution of points to form 
a raster layer. Thus, there may be n layers, one for each attribute. Although the 
objective in both vector and raster approaches is to achieve spatially seam-
less layers that cover an entire area of interest; it may be that for large areas 
the data volume in each layer becomes too large and cumbersome to handle 
conveniently (e.g., response times in display and analysis). When this occurs, 
layers are usually split into a series of nonoverlapping tiles, which when used 
give the impression of seamless layers.

Thus far, I have described the mainstream approach to representing spatial 
phenomena in GIS. Since the early 1990s, an alternative has emerged—the 
object-oriented (OO) view of spatial features, which should not be confused 
with the above object-based approach of vector representation. Spatial objects 
as discernible features of a landscape are still the focus, but rather than split-
ting their various aspects or attributes into layers (the geology, soils, vegeta-
tion, hydrology, etc., of a parcel of land), an object is taken as a whole with its 
properties, graphical representation, and behavior in relation to other spa-
tial objects embedded within the definition of the object itself (Worboys et 
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Figure 2.7
Basic organization of geometry and attributes in layered GIS: vector and raster.
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al., 1990; Milne et al., 1993; Brimicombe and Yeung, 1995; Wachowicz, 1999; 
Shekhar and Vatsavai, 2008). Thus, the modeling of “what” is separated from 
“where” and, in fact, both “where” and whether to use raster or vector (or 
both, or neither) as a means of graphical representation can be viewed as 
attributes of “what.” This then allows even abstract spatial concepts, such 
as sociocultural constructs to be included in GIS alongside more traditional 
physical features of a landscape (see Brimicombe and Yeung, 1995). Although 
from a personal perspective the OO view provides a superior, more robust 
approach to spatial representation in GIS, the market share for truly OO 
GIS (e.g., Smallworld, Laser-Scan) and database management systems (e.g., 
ObjectStore) has remained comparatively small. Instead, hybrid object-rela-
tional database management systems (ORDBMS, e.g., Oracle Spatial) have 
emerged to combine the best of both approaches to database management 
and spatial query.

Putting the Real World onto Media

Having introduced the representation of geographic phenomena in GIS from 
a practical “what you see on the screen” perspective, it is now necessary to 
do so from a computer science “what technically underpins it” perspective. 
Essentially, we want to achieve a representation of a landscape that can be 
stored digitally on a machine in such a way that the representation is con-
venient to handle and analyze using that machine. Ultimately, the intended 
purpose of the representation, the nature of software tools available and the 
types of analyses we wish to undertake will strongly influence the form of 
representation that is deemed appropriate.

A machine representation of a landscape as a digital stream of binary 
zeros and ones on a hard disk or diskette necessitates a considerable amount 
of abstraction, to say the least. The process of abstraction and translation 
into zeros and ones needs to be a formally controlled process if the results 
are going to be of any use. This process is known as data modeling and is dis-
cussed at some length by Peuquet (1984) and Molenaar (1998). Two diagram-
matic views of the data modeling process are given in Figure 2.8.

In general, four levels can be recognized within data modeling:

 1. The first of these is reality itself, which is the range of phenomena we 
wish to model as they actually exist or are perceived to exist in all 
their complexity.

 2. The second level is the conceptual model, which is the first stage 
abstraction and incorporates only those parts of reality considered 
to be relevant to the particular application. A cartographic map is 
a good metaphor for the conceptual model as a map only contains 
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those features that the cartographer has chosen to represent and all 
other aspects of reality are omitted. This provides an immediate 
simplification, though a sense of the reality can still be readily inter-
preted or reconstituted from it. Just as a cartographer must decide 
in creating a map what symbologies should be used for the various 
features, so it is at the conceptual modeling stage that decisions are 
generally made as to whether to use raster or vector and what the 
theme for each layer is going to be. The conceptual model is often 
referred to as the data model, which in a data modeling process can 
give rise to confusion.

 3. The third level is the logical model, often called the data structure. This 
is a further abstraction of the conceptual model into lists, arrays, and 
matrices that represent how the features of the conceptual model are 
going to be entered and viewed in the database, handled within the 
code of the software, and prepared for storage. The logical model 
can generally be interpreted as reality only with the assistance of 
software, such as by creating a display.

 4. The fourth level is the physical model or file structure. This is the final 
abstraction and represents the way in which the data are physically 
stored on the hardware or media as bits and bytes.

The third and fourth levels, the logical and physical models, are usually 
taken care of in practical terms by the GIS software and hardware being 
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used. Long gone are the days of programming and compiling your own GIS 
software from scratch when the designs of the logical and physical mod-
els were important. De facto standards, such as Microsoft® Windows® are 
even leading to a high degree of interoperability allowing Excel® spread-
sheets to be accessed in MapInfo, as just one example. The challenge then 
is in creating the conceptual model that will not only adequately reflect the 
phenomena to be modeled, but also lead to efficient handling and analysis. 
The choice between vector and tessellation approaches can be important, as 
they have their relative advantages and disadvantages. These, however, are 
not entirely straightforward as the logical model (as offered by the software) 
used to underpin any conceptual model has important bearing on the ease of 
handling and “added intelligence” of the data for particular types of analy-
ses. This issue then needs some further discussion.

Vector

As already discussed, the primitives or basic entities of vector represen-
tation are point, line, and polygon (Figure 2.9) where a point is a zero-
dimensional object, a line is a linear connection between two points in 
one-dimension, and a polygon is one or more lines where the end point 
of the line or chain of lines coincides with the start point to form a closed 
two-dimensional (2D) object. A line need not be straight, but can take on 
any weird shape as long as there are no loops. Any nonstraight line, from 
a digital perspective, is in fact made up of a series of segments and each 
segment will, of course, begin and end at a point. In order to avoid confu-
sion then, points at the beginning and end of a line or connecting two or 
more lines are referred to as nodes. Lines connected at their nodes into 
a series can form a network. Polygons (also known as area features) when 
adjacent to one another will share one or more lines. Because all lines have 
orientation from their start node to their end node, they have a direction 
and on the basis of this have a left and right side. Thus, within a logical 
model that records topology, which is explicitly recording connectivity (as 
in a network) or adjacency (as for polygons), the polygon to the left and 
right of a line can be explicitly recorded in the database (Figure 2.10). In 
this way, a fully topological database has additional intelligence so that 
locating neighboring lines and polygons becomes straightforward. Some 
desktop GIS do not go so far, leaving each feature to be recorded separately 
without reference to possible neighbors. These are commonly referred to as 
shape-files. Finally, by providing a unique identifier to each point, line, and 
polygon (usually done automatically by the software), a join can be made 
to a database containing relevant attributes for each object (see Figure 2.7). 
Thus, by selecting specific map features in a vector-based GIS, their attri-
butes can be displayed from the database. Conversely, by selecting specific 
attributes from the database, their spatial representation on the map can 
be highlighted.
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Tessellations

A tessellation is a space-filling mesh (Figure 2.11) either with explicit bound-
aries as a mesh of polygons or with an implicit mesh as defined, say, by a 
matrix of values in the logical model. A tessellation can be either regular, 
in which case, mesh elements are all the same size and shape, or irregular. 
Elements of a regular mesh could be isosceles triangles, squares (raster), 
rectangles, or hexagons. One example of an irregular mesh is a triangulated 
irregular network or TIN (Mark, 1975) in which a point pattern is formed into 
a triangular mesh often as a precursor to interpolating contours. Another is 
Theissen polygons (Theissen, 1911), which is the dual of TIN and represents the 
area of influence of each point in a point pattern.

Tessellations can also be recursive, that is, the basic mesh shape can be 
progressively split into a finer mesh in order to represent higher resolution 
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(a) (b)
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Figure 2.11
Examples of mesh types within the tessellation model: (a) point data set from which the tessel-
lations are derived, (b) Theissen polygons, (c) raster, (d) quadtree, (e) TIN.
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features. An example of this type of tessellation is the quadtree (Samet, 1984), 
which seeks to subdivide in a hierarchy, subject to a predefined minimum 
resolution, in order to achieve homogeneity within cells. One clear advantage 
of quadtree data structure over the traditional raster approach is that redun-
dancy is reduced and storage is more compact. Topology in tessellations can 
be either implicit or explicit (Figure 2.12). For regular meshes, neighbors can 
be easily found by moving one cell to the left, right, up, down, or diagonally 
in which case the topology is implicit. For a TIN, the topology can be made 
explicit just as it is in the vector model because each triangular element is a 
polygon. For structures such as quadtree, an explicit topology can be stored 
by use of Morton ordering (Morton, 1966) to produce a space-filling curve (in 
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this case an N-shaped Peano scan), which reflects position of a cell within a 
hierarchical decomposition. The generally accepted relative advantages and 
disadvantages of vector and tessellation approaches are given in Table 2.3. 
Even so, as will be discussed below, most GIS provide adequate functionality 
for transforming vector to raster and vice versa and for transforming point 
patterns to area features (Theissen polygons), areas to points (centroids), 
lines to areas, points to TIN, and so on. More often than not, choice of an 
initial conceptual model is by no means a straightjacket.

Object-Oriented

Object-oriented (OO) analysis seeks to decompose a phenomenon into iden-
tifiable, relevant classes of objects and to explicitly relate them into a struc-
tured theme (Coad and Yourdan, 1991). A class represents a group of objects 
having similar or shared characteristics. These are made explicit in the attri-
butes and services of a class, where attributes that describe or characterize 
the class and the services (or methods) are computer coded for handling 
that class (e.g., transformation, visualization). Thus, the class pub includes all 
objects that can be called a pub; attributes would include general character-
istics shared by all pubs (opening hours, license); services might include the 
code for plotting a symbol of appropriate size on a map or screen. A specific 
pub, say the George & Dragon, would be an instance of a class and would 
inherit the attributes and services of that class as well as having some attri-
butes and services specific to itself. The way classes are structured in a theme 
is shown explicitly by the links between them and which determine the form 
of association and, in turn, the form that inheritance takes. is _ a denotes 
generalization–specification structures while part _ of denotes whole-to-
part structures; other forms of association, such as possess, start, stop, and 
so on are possible. An example of an OO analysis is given in Figure 2.13 for 

Table 2.3

Relative Advantages and Disadvantages of Vector and Tessellation Models

Vector Tessellations
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Good portrayal of individual object 
geometry: versatility of point, line, 
polygon primitives

Portrayal of networks
Explicit topology
Multiplicity of object attributes in RDBMS
Topological (polygon) overlay

Good portrayal of spatially continuous 
phenomena (fields)

Relatively simple data structures
Map algebra (on raster)
Better conformance with remote sensing 
imagery

N
E

G
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T
IV

E Relatively complex data structure, 
requires conflation of common object 
boundaries between layers and edge 
matching of tiles

Poor representation of natural variation

Implicit and explicit topology only at cell, not 
feature level

Single attribute layers only
Blocky cartographic appearance
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some classes that constitute a landscape. The top most class (or super class) 
is landscape, which, for the sake of simplicity has two parts: community and 
topography. The class community can be further partitioned into classes, one of 
which is village, which in turn can be further partitioned into classes, one of 
which is building. Class pub is _ a building is a specific class of building with 
the George & Dragon being an instance of pub. Within this structure there are 
mixtures of classes that can be physical objects (village, topography) or those 
that are social constructs (community). Clearly it is very difficult to map a “com-
munity” and while it may physically consist, in this example, of a village and 
its surrounding hamlets and farms, it will have other dimensions that are nei-
ther easily quantified nor easily portrayed in map form (e.g., degree of cohe-
sion, social structure, political outlook). In a traditional vector or raster GIS, it 
is not possible to include abstract, conceptual features that are not distinctly 
spatial objects no matter how important they might be to planning and envi-
ronmental decision making. In OO, it is possible to include such classes of 
features, and while they may not have distinct geographic boundaries they 
can be included in the data structure and analyzed alongside those classes of 
features that are geographically distinct. For a more detailed example of this, 
see Brimicombe and Yeung (1995). So far in our landscape example, we haven’t 
touched on the issue of geometry. Whether a class is portrayed by its services 
in a vector or tessellation representation (or both, or even as 3D virtual real-
ity) will depend on the attributes and services that are encapsulated within a 
class or instance of a class. Thus, in Figure 2.13, the farm, hamlet, village, and its 
components may well be all represented by vector geometry while topography 
may be represented both as tessellations (raster, TIN) and vector (contours). 
Overall, while OO provides for much greater versatility, it is not so straight-
forward to implement as a traditional vector and raster GIS.

Data Characteristics

Data sources for GIS are broadly classified as primary or secondary. Primary 
data are those collected through first-hand surveys and can be termed raw 
data if they are unprocessed observations. Secondary data are those collected 
by others, perhaps even for a different purpose, or have been derived from 
published/marketed sources. All data used in connection with GIS that have 
dimensionality can be categorized by measurement type and have charac-
teristics of scale and resolution. Furthermore, the data may be an exhaustive 
compilation (e.g., census) or it may be a sample. With data so central to GIS, it 
is important to have an understanding of these issues.

A GIS layer of data has a locational, temporal, and thematic dimension or 
component, usually represented as a cube, whereby one component is always 
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fixed, another is allowed to vary in a controlled manner, and the third is 
measured (Sinton, 1978). Some examples are given in Figure 2.14:

For the land •	 cover layer, time is fixed as a snapshot; the theme is 
controlled through defining a fixed number of land cover catego-
ries; location is measured in as much as the land cover is observed/
recorded at all places.

PART_OF

IS_A

Ve
ct

or

George & Dragon

Te
ss

el
la

tio
n

an
d 

ve
ct

or

Figure 2.13
Object-oriented modeling of geographic features.
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For the •	 digital elevation model (DEM), time is again fixed; location is 
controlled in as much as the elevation is observed/recorded at fixed 
intervals on the mesh; theme (elevation) is measured.

For the •	 rainfall map, location is fixed in as much as the rain gauges are 
at specific invariant locations; time is controlled in as much as the 
rain gauges are read at specific times; the theme (amount of rainfall) 
is measured.

The dimensions of the data cube can take a range of values according to 
the scale of measurement used. Since the use of the term scale here can eas-
ily be confused with the cartographic scale of a map, I prefer to use mea-
surement type to denote the system of measurement in use. It has become 
conventional in the social sciences to classify measurement into four types 
(Stevens, 1946):

Nominal•	  where objects are classified into named groups (e.g., land 
cover classes).
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Examples of fixed, controlled, and measured components of GIS data.
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Ordinal•	  where objects are ranked in some order (e.g., from smallest 
to largest, lowest to highest).

Interval•	  where objects are measured according to a scale that has 
both an arbitrary zero point and an arbitrary interval (e.g., measure-
ments of temperature: 0°C is arbitrary defined as the freezing point 
of water and 20°C is not twice as hot as 10°C, just 10°C hotter).

Ratio•	  where objects are measured against an absolute zero and 
where relative ratios are preserved (e.g., velocity: 0 kph is absolute 
and 60 kph is twice as fast as 30 kph, which in turn is twice as fast 
as 15 kph).

This typology goes farther in being prescriptive about appropriate statisti-
cal procedures. For example, the mean should not be calculated for nominal 
and interval data and instead the mode and median should be used respec-
tively. Stevens’ typology has been criticized for not being sufficiently inclusive 
and for being too formal for good data analysis (Velleman and Wilkinson, 
1993; Chrisman, 1995; 1997). Data types frequently used in GIS and yet not 
sitting conformably with Stevens’ typology are counts (non-negative inte-
gers), probabilities (where the whole range is absolute between zero and one), 
direction (where the measurement is circular), fuzzy sets (where membership 
of a nominal class can be graded), and reference systems (where at least two 
scales are required simultaneously for measurement, e.g., {x, y} coordinates). 
Despite these difficulties, Stevens’ typology remains popular. Users of GIS 
should make themselves fully aware of the measurement type in use for 
each data layer and consequently how to handle each layer both individually 
(e.g., calculating summary statistics) and in conjunction with other layers. 
Some examples of GIS data layers classified according to Stevens’ typology 
are given in Figure 2.15.

The issues of scale and data resolution are fundamental to GIS and yet 
remain problematic (Lam and Quattrochi, 1992; Goodchild and Proctor, 
1997; Atkinson and Tate, 2000; Goodchild, 2001). Scale as a noun has at least 
10 different meanings in common use. From a spatial perspective, it can 
refer to a measurement type (above), the extent of some area (e.g., large-
scale process acting over an extensive area) and the representative fraction 
of a map (e.g., 1:10,000 scale). The fact that large-scale processes are likely 
to be shown on small-scale maps just adds to the confusion. Resolution, that 
is the smallest discernible feature, has been traditionally linked in broad 
terms with map scale in as much as the larger the representative fraction the 
smaller the objects it can feature. Thus, at 1:100,000 scale, a village may be 
portrayed as a dot whereas at 1:1,000 scale each house, shed, and garage in 
the village can be shown separately. It is widely accepted that environmen-
tal processes are scale-dependent (Davis et al., 1991), that is, have both tem-
poral and spatial resolutions at which they can be observed/measured. For 
example, plate tectonics occur at continental scales over millions of years 
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while landslides tend to affect just a few hundred meters and happen in 
seconds. This leads to the notion of a characteristic scale: the spatiotemporal 
scale (or narrow range of scales) at which a process (or the landform imprint 
of a process) best manifests itself for observation/measurement. Mapping 
scale and frequency of observation, therefore, should be tuned to the phe-
nomenon under investigation. However, the relevance of using a representa-
tive fraction as a measure of scale in a digital database has been questioned 
(Goodchild and Proctor, 1997; Goodchild, 2001). Goodchild suggests the use 
of a dimensionless ratio:
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Examples of GIS layers classified according to Stevens’ typology.
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 log10(L/S)   (2.2)

where L is length measure equal to the square root of spatial extent and S is 
the spatial resolution in terms of the shortest distance over which change is 
recorded. If log10(L/S) is kept to within a value of 3 to 4, then for any resolu-
tion it will determine the upper spatial extent of a tile (in terms of data vol-
ume) that is manageable and vice versa for any spatial extent to determine a 
workable resolution.

As commented above, a digital realization of a landscape is considered to 
be a sample of one because any number of slightly different realizations are 
possible. Nevertheless, data compilation can have as its objective the complete 
enumeration at a given resolution or it can set out to achieve a representa-
tive sample. For example, at the resolution of the individual person, a cen-
sus intends to enumerate everybody and achieve exact counts of age groups, 
employment, ethnicity, and so on. Such an exercise might be considered too 
expensive and instead the same data might be estimated by sampling. Often 
within a GIS database there is a mixture of both types. So, referring back to 
Figure 2.5, the layers representing landslides and land cover are intended to 
be exhaustive surveys in as much as every landslide above a minimum size 
is intended to be mapped and all areas are mapped in terms of their land 
cover. On the other hand, topography and rainfall are mapped on the basis 
of sampling. Rainfall is sampled only where there are rain gauges while 
topography is usually captured according to a sampling scheme (e.g., regular 
profile, regular grid, progressive grid) and then interpolated into contours 
or a gridded DEM. Certain types of data, such as census, crime, and health 
are more often than not referenced by administrative units. Although the 
data at its highest resolution may be geocoded (adding of {x, y} coordinates) 
as individual points based on addresses, it is often deemed for reasons of 
confidentiality not to release the point data, but present them as aggregated 
data by administrative unit. Since the boundaries of administrative units are 
frequently arbitrarily defined in relation to natural and social phenomena, 
the shape and size of the units themselves can significantly affect the aggre-
gation and hence the interpretation of the data. We will return to this issue 
in Chapter 9.

Data Collection Technologies

Systems for the consistent measurement of length, area, weight, and time 
are fundamental to any organized society. As with most areas of science 
and technology, the microchip has revolutionized the way measurements of 
the Earth’s surface and its cover are collected, stored, and processed to form 
usable inputs to GIS. For the spatial sciences, the 1990s were a transition from 
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data-poverty to data-richness. This state change in the availability of digital 
spatial data was facilitated by:

Improved technology and wider use of GPS, RS, and digital photo-•	
grammetry for data collection.
The introduction of new technologies, such as LiDAR and radar •	
interferometry.
The operation of Moore’s Law resulting in increased computing power •	
to process raw data coupled with the falling cost of data storage.
The advent of data warehousing technologies.•	
Increasingly efficient ways of accessing and delivering data online, •	
particularly through portals.

While it is still possible to discern particular approaches to measurement, 
such as land surveying and remote sensing, the various technologies are 
being increasingly integrated into digital mapping systems. These systems 
are increasingly aimed toward automated data collection for the construction 
and visualization of 3D models (Grejner-Brzezinska et al., 2004). In this sec-
tion, I will describe some key components that go to make up state-of-the-art 
systems, but the reader must understand that this is a rapidly evolving area.

gPS and inertial Navigation Systems

Central to nearly all forms of measurement and mapping is the Global 
Positioning System (GPS). Initiated as a program in 1973 by the United States 
with the first satellites launched in 1978, it became fully operational by 1993. 
GPS is now indispensable for geographical positioning and navigation. The 
Russians have developed their own system (GLONASS), the European Union 
(EU) is rushing ahead with its own (Galileo), and other states, such as China, 
are also either implementing new or supplementing existing systems with 
their own satellites. For simplicity, I will refer to all satellite-based position-
ing systems as GPS.

The U.S. GPS is based on a constellation of 24 satellites that orbit the Earth 
at an altitude of approximately 20,000 km. Radio signals are emitted by 
the satellites over a number of frequencies that can be picked up by receiv-
ers regardless of weather conditions, time of day, or position on the Earth. 
The only criterion is that receivers must have an unimpeded “view” of the 
sky. Generally the signals from three satellites are required for a depend-
able 2D (x,y) position fix and from four satellites for a 3D (x,y,z) position fix. 
Positioning accuracy depends on a number of factors: number and configu-
ration of satellites in view, type of receiver, length of time allowed for a fix, 
whether a differential mode is used, and the amount of postprocessing car-
ried out on the stored signals. In differential mode GPS (DGPS), a reference 
receiver at a known stationary position of accurately surveyed coordinates 
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(x,y,z) is used to supply correction data either in real time by wireless or for 
use in postprocessing. DGPS on receivers designed for geodetic surveying 
can provide subcentimeter accuracy. Handheld receivers typically have an 
operational accuracy of ±3 m to ±15 m depending on the configuration of 
the satellites in view. Most manufacturers provide a range of equipment and 
accuracies (see http://www.trimble.com; http://www.garmin.com).

Inertial navigation systems (INS) are quite different from GPS, although 
they still allow the user to track position from some known point. INS use 
three sets of gyroscopes and accelerometers carefully calibrated inside a 
vehicle (car, helicopter, aircraft) and aligned to the orthogonal axes of the 
3D coordinate system in use (northing, easting, elevation). The vehicle can 
then travel in 3D space and have its position tracked by measuring the forces 
applied in acceleration and changing its position. By coupling INS with GPS 
allows INS to have ongoing calibration and for both the position and ori-
entation (pitch, roll, yaw) of the vehicle to be tracked with accuracies down 
to centimeters for position and tens of arc-seconds for orientation. This has 
implications for remote sensing (discussed below) in that the position and 
orientation of an imaging or measurement sensor (that is being flown in a 
helicopter or aircraft) can be known at all times and thus can provide for an 
automated means to rectify and transform RS data into the desired ground 
coordinate system.

remote Sensing

Remote sensing can be defined as the acquisition of data about objects using 
a sensing devise that does not require direct contact with the objects them-
selves. Thus, the use of a camera to obtain data about objects (as opposed 
to taking souvenir snaps) would constitute remote sensing. Use of cameras 
in this way from balloons and aircraft goes back at least a century and had 
certainly become routine by World War II. Aerial photographs have very 
high resolution, down to the manhole cover in the street, and can either be 
interpreted for the features contained within the images (API), such as the 
nature of the geology or vegetation, or used for measurement (photogram-
metry), such as in the derivation of topographic contours or the mapping of 
buildings, land parcels, and roads (see http://www.getmapping.co.uk). For 
both these uses, it is usual to use partially overlapping images, which when 
viewed together permit a 3D stereoscopic visualization of the landscape. As 
with nearly all technologies, aerial photography and photogrammetry have 
moved into the digital age with digitally acquired or scanned photographs 
being rectified and measured in a semiautomated fashion by software for 
the fast production of maps.

Satellite imaging for civilian purposes started in the 1960s with meteoro-
logical satellites, but was quickly followed in the early 1970s by satellites with 
imaging systems designed to observe the Earth’s surface rather than its atmo-
sphere. While some traditional film-based cameras were used from space by 
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the Americans and the Russians, unmanned satellite imaging devices are 
wholly digital systems so that data are transmitted back to receiving sta-
tions and compiled into images. More than 200 Earth observation satellites 
have been launched (though not all are still in operation) with 19 launched 
in 2008 alone. Up-to-date information on these satellites and their sensors 
can be found at http://www.tbs-satellite.com/tse/online/mis_telediction_
res.html. One set of imaging systems generally works by scanning a strip 
or swathe orthogonal to the direction of orbit with successive scans used 
to construct the images. These were also designed to be multispectral, that 
is, each swathe being split into different bands of the electromagnetic spec-
trum, most commonly blue, green, red, and infrared, and thus extending the 
imaging beyond the visible spectrum. Just as digital cameras are sold today 
labeled according to the number of megapixels with which an image is cap-
tured, satellite imaging is most usefully classified according to its resolution, 
i.e., the ground area covered by one pixel of the image. This can range from 1 
square kilometer pixels down to the higher resolution imaging systems, such 
as GeoEye’s Ikonos (http://www.satimagingcorp.com), which has a pixel 
size of one square meter (for panchromatic) and 4 m (for multispectral), suf-
ficient then to discern large vehicles. Swathe width also varies with higher 
resolution having narrower swathe width. For Ikonos, the swathe width is 
11 km. In other words, to provide coverage for, say, Greater London, would 
require six passes of the Ikonos satellite given that there is lateral overlap 
of the swathes taken on successive orbits. Furthermore, the Ikonos imaging 
system can be tilted ±30o in any direction allowing the acquisition of stereo-
scopic imagery, which can then be used for 3D visualization and photogram-
metric purposes.

Described thus far has been passive remote sensing, in other words, imag-
ery that passively records reflected light from the Earth’s surface or off 
objects. Such systems are limited to daytime operation and, if the Earth’s 
surface is to be imaged, the weather must be cloud- and haze-free. Active sys-
tems are those that provide their own source of energy and then record the 
strength of the reflected signal. Aircraft- and satellite-borne radar has been 
used since the 1960s with higher resolutions being deployed in the 1990s 
onwards. These have a resolution of up to 10 square meters, and while this 
is a generally lower resolution than the passive systems described above, 
nevertheless has two important attributes: (1) they can operate day and night 
(since they generate their own energy source) and (2) in all weathers (since 
radar wavelengths can be cloud penetrating). This provides an invaluable 
capability, for example, to detect and map flooding and other hazards/disas-
ters that occur during poor weather or poor light conditions. LiDAR (light 
detection and ranging) is a system for laser-based remote sensing. Usually 
mounted on an aircraft or helicopter with GPS and INS for positioning, 
LiDAR emits vertically downward pulses of light and measures the proper-
ties of the return signal to determine very accurate measurements of height. 
Because the pulses are spaced every few centimeters, a very dense data set is 
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collected that then can be filtered and used to visualize the height and shape 
of buildings, vegetation, and all manner of street furniture as well as the 
slightest change in topography (see http://www.earthdata.com).

ground Survey

Land surveying is the art and science of measuring distance (horizontal and 
vertical) between objects, measuring the direction of line between objects 
and the angles between lines. It has been the time-honored approach to map-
ping features and boundaries, to calculating areas and subdividing areas 
and to drawing up cross-sections for land management, construction, and 
a host of other applications. It used to be that all maps were compiled using 
land-surveying techniques, but for the past 50 years has been supplemented 
first by aerial photography and then by satellite remote sensing to increase 
the speed and cost-effectiveness with which maps and now digital cover-
ages can be compiled. Nevertheless, land surveying remains the most accu-
rate. Again the microchip, together with GPS and the ability to generate and 
measure the return signal from beams of infrared and laser light, land sur-
veying has been revolutionized almost beyond recognition. The equipment 
has become considerably automated while software is used to carry out the 
calculations. Land surveying has also become digitally integrated with GPS 
and remote sensing to form automated systems for data integration and pro-
duction (Grejner-Brzezinska et al., 2004).

While land surveying, GPS, and remote sensing provide geometric data, 
field surveys are carried out to sample check (ground truth) automated map-
ping methods, to collect more detailed attribute data, and as a means of 
monitoring changes to attribute data. While some attributes can be collected 
during a land survey or from remote sensing, many attributes tend to be col-
lected separately and from a range of sources. Key to field surveys these days 
are mobile GIS deployed using personal digital assistants (PDA) or tablet 
PCs. This has come about due to the increasing power of PDA, their wire-
less connectivity, the availability of add-on GPS, and the increasing sophis-
tication of the GIS software that can be installed. The position of the field 
operative can be displayed in relation to base mapping, thematic overlays, 
and remote sensing imagery; attributes can be entered through a series of 
customized data entry forms that do preliminary onsite checking of consis-
tency so that gross errors (or blunders) can be rectified before moving on. 
This digital approach allows new data to be checked and integrated into the 
main database more quickly (Wagtendonk and de Jeu, 2007).

Another form of ground survey that has risen in popularity in recent years 
is the drive-by survey (see, for example, Google Street View). This is a field 
survey technique in which a vehicle is equipped with high accuracy dif-
ferential GPS, laptop(s), pen tablets (for digital note taking), voice recording 
(also for annotation), roof-top digital cameras or video providing 360o view, 
and wireless communication. The vehicle is then driven along road networks 
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and even off-road while an operative supervises the recording of new data 
and changes to the existing database.

Nontraditional approaches to Data Collection

The ever-growing need for automated and cost-effective methods of spa-
tial and attribute data collection with improved granularity is fostering the 
development of nontraditional techniques. Closed-circuit television (CCTV), 
although technically a form of remote sensing, is used for recording traffic 
and people flow rates. However, a range of roadside and inroad devices using 
radar, acoustic sensors, and infrared detectors are being increasingly deployed 
not only to count traffic and pedestrians round-the-clock, but also to classify 
the traffic into vehicle types and to determine levels of congestion so as to 
provide near-instant warnings of events that are happening on our roads. 
Laurini et al. (2001) have classified this type of spatial data collection where 
remote sensors telemeter data across fixed-line or wireless links to an opera-
tions center that is monitoring some spatial phenomenon (e.g., weather, river 
flow, traffic flow, transport of hazardous materials) as TeleGeoInformation.

Basic Functionality of GIS

From one perspective, all the basic functionality of GIS packages can be 
viewed as data transformations. From the initial loading of the data through 
its analysis to visualization as a thematic map merely requires GIS func-
tions to appropriately transform data from one form to another. While this 
view of a GIS is a useful perspective in thinking about what GIS packages 
really do (coordinate geometry, matrices, computer graphics), it is less useful 
in conceptualizing strategies for using GIS functionality for achieving spe-
cific analytical goals. We will still apply the term though to a subset of GIS 
functionality. Another broad view is that of cartographic modeling (Tomlin, 
1990) involving the manipulation of representations of maps as a high-level 
computational language. While in theory this can be applied to both raster 
and vector data, in practice it was limited to raster data and while versatile 
does not, to my mind, capture the essence of modern GIS. There have also 
been attempts to specify a set of universal functionality we might reasonably 
expect from a GIS package (e.g., Albrecht, 1996a). Again, this is problematic 
in as much as it does not fully recognize the role of algorithm in GIS. One can 
specify a function, such as “calculate gradient,” as being part of the universal 
set, but as we shall see in Chapter 9, there are a number of different formulae 
one can adopt, each likely to give you a slightly different answer.

The range of functionality commonly associated with GIS as a technology 
is as follows:
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Data entry and editing: This includes not only the import of purchased 
data sets, but also digitizing from secondary sources (with copyright 
permission), though the amount of digitizing that needs to be car-
ried out on projects these days has dwindled because of the greater 
availability of data in the market. Where additional attributes come 
from internal sources, there is normally functionality that facilitates 
the reading of database and spreadsheet files and the joining of 
these attributes to vector objects using a unique key (see Figure 2.7). 
Attributes that have no immediate graphic representation, but 
include a geographic locator, such as a postcode, can be geocoded from 
geographic base files that list, for example, {x, y} coordinates for all 
postcodes. These base files usually need to be purchased separately 
and loaded into GIS. A geocoded data set can then be imported as 
point event themes. Functionality is also available for the onscreen 
editing of feature geometry and individual attributes as well as the 
means to calculate new attributes from existing ones.

Transformation: This includes a number of processes key among which 
are vector-to-raster transformation and vice versa. Included here 
are transformations of coordinate system, map projection, and 
reclassification of attributes. Another important transformation is 
spatial aggregation, such as the clumping of point data into zones 
or the clumping of smaller zones into larger ones. This may also 
take the form of dissolving redundant lines separating adjacent 
polygons that have been reclassified so they fall within the same 
class. Finally, but not universally present, is line simplification, 
which together with reclassification and aggregation can be used 
in generalization.

Query: This includes search by area to extract their attributes, search 
by attribute to extract corresponding areas and selection of features 
from one layer on the basis of the features in another. Queries can 
include the measurement of distances and areas. Also included 
here would be basic statistics (count, central tendency, maximum, 
minimum, range) and cross-tabulations of the attributes of one layer 
against another.

Interpolation: This includes point to area (Theissen polygons, see 
Figure 2.11(b)), point to field (contours generated using TIN and other 
computational modeling techniques, see Chapter 4), area to point 
(creation of a centroid point from a polygon), area to field (by con-
touring from the centroid), and area-to-area (from one set of zones 
to another).

Cartographic processing: This covers the manipulation of vector lay-
ers and principally includes overlay and buffering. Buffering is the 
systematic enlargement of features whether they are point, line, or 
polygon features. An example of a 500 m buffer around the roads 
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in our example landscape is given in Figure 2.16(a). Buffers can be 
concentric, say every 100 m. For polygons, buffers can be internally 
made to reduce its size or even to create doughnut shapes that follow 
the polygon boundary. Overlay is when two or more layers are fused 
to create a new layer (Figure 2.16(b)) where the topology is rebuilt so 
that the polygons thus created carry with them the attributes of the 
parent polygons in the source layers. Selections of pertinent combi-
nations of attributes can then be made using Boolean operators as a 
means of query or reclassification.

Map algebra: This covers the manipulation of raster layers mostly in an 
algebraic equivalent way where layers can be weighted by some con-
stant if necessary and then layers can be added, subtracted, multi-
plied, divided, compared for maximum or minimum values, and so 
on. An example of map algebra is given in Figure 5.12 where a wild-
fire hazard layer is calculated from a reclassification and weighted 
summation of gradient, land cover, and elevation. Operations can 
include calculating or interpolating the value of cells from their sur-
rounding cells, as in the calculation of the gradient of a cell from the 
elevation of its surrounding cells.

Thematic mapping: These are operations for the production, layout, visu-
alization, and printing of thematic maps including choice of layer 
combinations, class intervals, color, pattern (or texture), symbology, 
and symbol size (or gradations). The production of good thematic 
maps that communicate well is both an art and science and is by no 
means trivial (see Chapter 10). To assist users, software developers 
often include certain defaults but these can easily result in “throw 
away” graphics of little value.

A Systems Definition of GIS

The discussion about GIS thus far has focused on data and software. But 
GIS are more than just these two entities. Taking a holistic systems view, GIS 
should also encompass: hardware, data collection/updating processes, dis-
semination of the products (maps, graphics, tables, reports), and the people 
who work with GIS along with their organizational structures. GIS can be 
viewed narrowly as just a tool, but should be viewed more broadly as an 
approach or way of working. We have now covered sufficient aspects of GIS to 
have an informed consideration of some definitions. The trouble is, there is 
no one single accepted definition. Maguire (1991) quotes no less than 11 defi-
nitions from the literature. Perhaps the most often quoted definition is that 
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of Burrough (1986a, p. 6): “… a powerful set of tools for collecting, storing, 
retrieving at will, transforming, and displaying data from the real world for 
a particular set of purposes.” While this definition captures much of what 
GIS are about, it is a toolbox view rather than a systems view. The following 
definition from Dueker and Kjerne (1989, p. 7), therefore, is preferred with 
my modifications in brackets:

… a system of hardware, software, data, people, organizations and insti-
tutional arrangements for collecting, storing, analyzing, [visualizing] 
and disseminating [spatial] information about areas of the Earth.

Conventionally, and not so long ago, this chapter would have ended right 
here. But there has been some paradigm shifts of late and we must go a 
stage farther and consider GIS within the context of geocomputation and 
geosimulation.

Limitations of GIS and the Rise of 
Geocomputation and Geosimulation

The rise of a geocomputation paradigm needs to be seen from a perspec-
tive of the limitations of GIS and the maturation of complementary tech-
nologies. That GIS are a successful technology for the handling, integration, 
and visualization of diverse spatial data sets is not in doubt. However, like 
any rapidly evolving technology, its roots and initial trajectory have resulted 
in certain defining de facto standards in the way spatial data are handled 
and manipulated. While this has allowed vendors to define and capture a 
market, we are left in some respects constrained by what we can do with 
GIS alone. As I have hinted at in this chapter, GIS are not very good in han-
dling time because layers are predominantly snapshots. Yet, we analyze and 
seek to recognize patterns in the landscape that allow us to hypothesize or 
deduce the processes at work. Processes are dynamic and act over time, in 
which case “standard” configurations of GIS are suboptimal for studying 
processes. The same can be said for studying flows and interactions as these 
are temporally dependent. The other key issue is with regard to modeling. 
While, as we will see in Chapter 4, the term modeling can mean many things, 
the use of the term modeling in the sense of being able to simulate is rarely 
used in definitions of GIS.

Modeling in conventional GIS is limited to how we express real world 
objects as data (data modeling) and ways in which we might transform and 
analyze that data (e.g., cartographic processing, map algebra). Fairly simple 
simulations can be achieved, but not of complex environmental processes. 
Then there is the meaning of “analyze” in a GIS context. Many vendors 
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would have us believe that they are supplying us with “spatial analysis” tools 
when what is, in fact, provided is mostly database and geometric manipula-
tion. Statistical functionality is limited and there is almost universal absence 
of tools for analyzing point patterns, spatial autocorrelation, carrying out 
geostatistics or even good exploratory analysis (see, for example, Bailey and 
Gatrell, 1995; Fotheringham et al., 2000; Lee and Wong, 2001, as most of these 
topics are beyond the scope of this book). In these areas, conventional GIS 
quickly run up against the buffers. In the meantime, other tools and tech-
nologies have been developing as fast, if not faster, than GIS (e.g., statistical 
and spreadsheet packages, RS packages, artificial intelligence, neural net-
works, and so on), which can complement GIS and broaden our analytical 
and modeling capability.

What is touted as the “GIS revolution” was, in fact, over by the late 1990s 
in as much as GIS had become an accepted technology. While diffusion of 
GIS is far from complete, one is no longer pushing back the frontiers merely 
by adopting GIS. A more important distinction comes from the way GIS are 
being used. A paradigm shift for many areas of science in the latter part 
of the 1990s was the increasingly central position of computation—the use 
of computers having a pivotal role in the form of analysis—as an essential 
ingredient alongside observation, experimentation, and theory (Openshaw 
and Abrahart, 1996; Fotheringham, 1998; Longley et al., 1998; Armstrong, 
2000). Thus, computers are no longer just accessories to research, they form 
the research environment itself. Geocomputation then can be defined as the 
use of “spatial computation tools as a means of solving applied problems” 
(Brimicombe and Tsui, 2000) and contributing to the development of theory 
(Macmillan, 1997). An important precondition has been the rapid improve-
ment in the power, speed, and economics of computing in the 1990s, but 
equally important has been the sudden proliferation of spatial data sets 
during the same period, which permit “almost limitless possibilities for cre-
ating digital representations of the world” (Longley, 1998). The solution of 
nontrivial problems usually requires large (if not massive) nontrivial data 
sets that, in turn, require processing by high-performance computers. So 
what might be included on the menu of geocomputational tools? Certainly 
GIS are there, but other tools and techniques used singly or in combination 
with GIS would include spreadsheets, statistical packages, data mining and 
knowledge discovery, neural networks, artificial intelligence, heuristics, geo-
statistics, fuzzy computation, fractals, genetic algorithms, cellular automata, 
simulated annealing, and parallel computing (Couclelis, 1998; Armstrong, 
2000). Such a powerful array means that geocomputation provides new 
opportunities to:

Find better solutions for old problems.•	

Find solutions for previously unsolved problems.•	

Develop new quantitative approaches in modeling spatial phenomena.•	
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Another recent paradigm shift involves the use of agent technologies. 
Agents are problem-solving software that can be embedded in a dynamic 
and open environment to autonomously pursue their goals (Jennings, 2000; 
Ferber, 2005). Agent technologies have been widely used in artificial intel-
ligence, computer networking, software engineering, and human–computer 
interaction. In the area of spatial modeling, agents (as multiagent systems) 
have been used to simulate the behavior of individual objects (people, 
vehicles, animals) in order to understand what macro patterns of behavior 
emerge from the micro behaviors of these individuals (Batty and Torrens, 
2005). Although an aspect of geocomputation has always been numerical 
simulation, the use of multiple agents systems alongside GIS to simulate spa-
tial processes has led to the term geosimulation (Albrecht, 2005) and can be 
viewed as a major shift in the simulation of spatial phenomena.

The geocomputation and geosimulation paradigms offer exciting new ave-
nues for research and application incorporating GIS, environmental mod-
eling, and engineering. So dramatic have been the technical advances that 
they have changed the very problems we think about solving (Macmillan, 
1998). But, before we move on to the modeling and engineering, it should 
be pointed out that we have treated GIS in this chapter wholly as a technol-
ogy. Is this technology backed up by a science? If technology is the applica-
tion of science and if there is no geo-information science (GIScience), then GIS 
are hollow and without foundation. The science behind GIS is the subject of 
Chapter 3.
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3
GIScience and the Rise of 
Geo-Information Engineering

In Chapter 2, we looked at the nature of geographical information systems 
(GIS) from their beginnings and took a broad view of what they do and 
how they do it. It will not have been lost on the reader that GIS have their 
roots in technology and are commonly viewed as tools for handling and 
analyzing spatial data. We also saw how GIS have become bound up in 
geocomputation and how this opens up exciting new vistas for research and 
application. So are GIS just toolboxes for “turning the handle” on spatial 
data—shove some data in at one end and churn out some maps at the other? 
Or is there something more to it that merits the title of “Science” that cre-
ates a discipline in its own right? This is not just idle academic musing, but 
has implications for those numerous disciplines where GIS are applied. If it 
is not just a case of “turning the handle” and there are indeed substantive 
issues, which are important in the way we use GIS and spatial data, then 
users should be aware of them. A number of these issues provide the basis 
for Section III of this book. This chapter, therefore, aims to set up a frame-
work within which these issues can be placed and their importance under-
stood. This is not intended to be a lengthy chapter and readers wanting to 
follow up the debates around GIS as science, technology, and engineering 
should refer to: Goodchild (1992b), Wright et al. (1997a; 1997b), Pickles (1997), 
Burrough (2000), Frank (2000), Frank and Raubal (2001), Berry et al. (2008), 
and Brimicombe and Li (2009).

Technology First …

The introduction of geographic information systems, as a technology, 
unleashed across a number of disciplines, an increasingly complex debate 
as to what it is, what it should be, should it be theirs, how and at what stage 
should it be taught, and what is its academic and professional standing? 
That such chaos should arise from simple beginnings should perhaps not 
be surprising given that the external technological environment has been 
changing faster than the subject domain. This technological forcing on 
GIS is of little comfort, however, to those who wish to grasp it. The early 
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commercializing stage of GIS can be identified as being from the late 1970s 
until the end of the 1980s. This was a period when GIS were universally 
regarded as tools and a considerable body of literature developed to define 
the nature of the technology both conceptually (e.g., Peuquet, 1984), function-
ally (e.g., Dangermond, 1983), and to differentiate them from other tools (e.g., 
Cowen, 1988). Governments even discussed how best to reap the benefits 
offered by such technology (e.g., Dept. of Environment, 1987—the “Chorley 
Report”). GIS technology in the early stages had considerable diversity of 
form, not only in terms of functionality and interfacing, but also in terms of 
what it was supposed to be used for (e.g., cadastre, resource mapping, auto-
mated cartography). The dominance of the MSWindows®-style user interface 
together with the eventual market dominance of a few GIS software vendors 
have given the technology a more consistently recognizable form. That the 
technology was under constant development would suggest that there was a 
formidable engineering component during this period in the sense of “tool-
making” (Wright et al., 1997a). This may need however to be discounted as 
“engineering” if we take engineering in its more usual sense as the practical 
application of science, in which case, what might be called the science of GIS 
has largely emerged from the technology.

The technology emerged in the first place to fill a niche because the han-
dling of spatial data was somehow more difficult than other types of data. 
Certainly the collection of spatial data—land and hydrographic survey-
ing, photogrammetry—was afforded a distinct niche and was largely the 
province of professionals who were either formally registered or chartered. 
Mapping in most countries was vested in public sector agencies subject to 
state control. Spatial data were voluminous, which in the 1960s and 1970s 
caused data entry, storage, and processing problems on the computers of the 
day. Spatial data also seemed to need a “special kit” consisting digitizers, 
scanners, more than one screen, and plotters, all of which required technical 
expertise. Spatial data also seemed to need rather different data structures 
and algorithms with a distinct separation of the geometric component and 
the attribute database. But technological development has overtaken most 
of these aspects of GIS such that spatial data are no longer “difficult.” Those 
professions that served in the collection of spatial data have seen their niche 
space seriously impacted by a host of disciplines, which, armed with GPS, RS 
imagery, digital photogrammetry, total stations, data obtained or purchased 
over the Internet, or even just a GPS-enabled mobile phone, can compile 
their own specialist base mapping. The traditional mapping authorities find 
themselves under competition from the private sector. Furthermore, to “do” 
GIS no longer requires “special kit” as the peripherals (if needed at all) have 
become normal, out-of-the-box, plug-and-play technologies. GIS software sits 
conformably in an interoperable environment alongside word processing, 
spreadsheets, statistics, multimedia, Web browsers, and virtual reality, and 
we think nothing special of it. The act of adopting GIS by an organization is 
no longer pushing back the frontiers. So, does GIS still have a claim to fame? 
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Well, yes it does in as much as integrating, handling, and analyzing spatial 
data is still more easily and efficiently carried out using GIS. You could try 
typing a page of text using a spreadsheet and would probably succeed, but 
it’s more efficiently done—typing, editing, formatting—in a word processor. 
So, it is still with spatial data and GIS and will probably remain so. The other 
aspect of this is what we use GIS for. Crain and Macdonald (1984) articulated 
an evolutionary model of GIS facilities (Figure 3.1) in which the dominance 
and mix of activities changed from inventory through analysis into man-
agement. While the early years of GIS were dominated by inventory-type 
activities and applications, the way we tend to use GIS today places us firmly 
in Stage III with a predominance of analytical- and managerial-type activi-
ties and applications. We are much more into modeling, decision support, 
and “what if”-type analyses where GIS are coupled with other technologies, 
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including environmental simulation models, in a geocomputational environ-
ment. New applications are emerging, such as location-based services (LBS), 
which ensure the continued relevance of GIS and are assisting its emergence 
from niche technology to ubiquitous technology (Li and Maguire, 2003; 
Brimicombe and Li, 2009).

Science to Follow …

If, as we have seen, there is and remains a substantive technology that we 
refer to as GIS, then as with all other established technologies, is there a 
foundation in science? Goodchild, in his keynote opening of the debate 
(Goodchild, 1990a; 1992b), set forward two main criteria for the recognition 
of science in GIS:

That the domain contained a legitimate set of scientific questions.•	
That spatial data were unique.•	

These, he argued, were indeed fulfilled and that GIS were indeed tools for 
geographic information science (GIScience). Thus, the distinctiveness rests on:

The use of the spatial key {•	 x, y, a1, a2,..., an}, where {x, y} define loca-
tion as continuous dimensions and {a1, a2, ... , an} define the attri-
butes of location either as continuous or discrete dimensions.
The presence of spatial dependence—nearer things are more likely •	
to be similar than distant things.
The durability of the spatial data primitives of point, line, polygon, •	
and cell/pixel that have underwritten the technology and its appli-
cation in many diverse applications (Burrough, 2000).

Yet, the notion of a coherent science has somehow remained uncertain. 
On the one hand there seems to have been an overarching premise that the 
science should be based on GIS technology (as commonly understood). A 
narrow view of the pertinent technologies may well limit what questions the 
science can effectively answer. On the other, much of the argument around 
GIScience has been overly influenced, I believe, by the notion that it is part 
of geographic science or geography. For example, Frank (2000) states that: 
“Geography is about how people interact with the environment. GIScience 
is computational geography, modeling processes in space.” It’s a view I have 
some trouble with as it implies that other disciplines that extensively use and 
carry out research with GIS technology, such as planning, environmental 
science, and surveying, somehow have less to offer GIScience. They have and 
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will continue to make valuable contributions, after all, many of the early and 
significant developments in GIS did not come from geography departments. 
At the same time, significant branches of academic geography today remain 
unconvinced of the benefits in GIS for their discipline. Furthermore, there is 
now the insertion of computational science into the equation in order to han-
dle both the complexity of models that are being developed and the massive 
data sets that are now available (Armstrong, 2000). These spatial data sets 
are often disaggregated, of higher resolution, and of greater temporal fre-
quency than previously available for analysis, giving rise to new knowledge-
discovery techniques that are underpinned by theoretical developments in 
spatial data handling (e.g., Miller and Han, 2001). The emergence of a geo-
computational paradigm in which GIS are but one contributing technology 
serves as a marker that GIS are not the only tool of GIScience. “Even as many 
geographers disavow social science, geospatial science has emerged as a 
lusty arena marked by intellectual vigor, conceptual growth, and enhanced 
analytic abilities. What now is taking shape is a spatially integrated socio-
environmental science that is transcending older disciplinary attachments, 
boundaries, and constraints” (Berry et al., 2008)

In order to fully understand the scientific plot, we need to go back to the 
beginning, to Goodchild’s keynote. In it, he states that “we must first establish 
that spatial, or rather, geographical data are unique, …” (Goodchild, 1992b). 
Setting aside any subtle differences between “spatial” and “geographical,” 
the uniqueness lies in the nature of the data and the scientific questions 
that will arise out of its collection, handling, and use. Such data need not 
only be quantitative, but also qualitative (e.g., Brimicombe and Yeung, 1995; 
Brimicombe, 1997). As we have already noted above, spatial data can claim 
distinctiveness from other forms of data. Molenaar (1998) uses the term 
geodata and goes on to present a conceptual, linguistic model of geodata 
comprising three elements: syntax, semantics, and uncertainty (Figure 3.2). 
Syntax describes how we define and encode data objects, how we link their 
geometric representation with their thematic attributes, and how we identify 
and encode their spatial relationships. Geodata syntax is thus the specific 
data structures we employ to handle the distinctive spatial key {x, y, a1, a2,..., 
an}. Semantics represents the link between the objects in the data and file 
structures and the real world of landscape features as we interpret them to 
be. Thus, semantics is about the meaning we impart to geodata. But, there is 
some indeterminacy about these meanings for two important reasons. The 
first is that statements about the real world can have contested meanings and 
what we as individuals see and recognize in a landscape depends on how 
we interpret what we see through our various cognitive filters. For example, 
I tend to view landscape as a geomorphological construct, my wife sees it 
as predominantly a cultural construct, and we are both GIS professionals. 
Second, and very importantly, our data structures are necessarily simplifi-
cations of reality. In creating a data structure and populating it with data, 
we strip off large swathes of reality—sound, smell, unimportant features, 
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ephemeral features, features that are too small, and so on—we inductively 
classify and simplify those objects that are of interest and create a static snap-
shot in the form {x, y, a1, a2, ..., an}. In so doing, errors can easily creep in (see 
Chapter 8). Not surprisingly then, when we try and reverse the process from 
data to reality, something can go amiss in the translation. Therefore, there 
is an inevitable level of uncertainty in both syntax and semantics and, thus, 
needs to be recognized as an important dimension of geodata.

I believe this geodata model can be extended to provide a conceptual model 
or linguistic framework with which to express the key focus of a GIScience 
(Figure 3.3 through Figure 3.7). To Molenaar’s geodata model, I would add 
a fourth item: operations. This represents the algorithmic, software basis for 
the entry, storage, handling, analysis, and visualization of geodata—in other 
words, the basic functionality of what we would recognize to be a GIS pack-
age, but could well be some other type of package that included such func-
tionality (e.g., an environmental simulation model with embedded spatial 
data handling functionality). I will refer to these four items as key aspects of 
GIScience built on the distinctive features of spatial or geographic data and 
which together visually form a tetrahedron (or pyramid), as illustrated in 
Figure 3.3. 

The six edges of the tetrahedron forming the links between the aspects 
at the vertices can be viewed as defining certain models that are central to 
GIScience (Figure 3.4), many of which have been subject to research over the 
lifetime of GIS. These are

Data models and ontologies: These link semantics and syntax. They rep-
resent the way in which reality is abstracted into the data structures, 
which, as we have seen in Chapter 2, is dominated by topological 
vector (object-based) and raster (field-based) representations with 

Syntax

Semantics Uncertainty

Figure 3.2
A conceptual model of geodata. (Based on Molenaar, M. (1998) An introduction to the theory of 
spatial object modeling. Taylor & Francis, London.)
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object-oriented (OO) data models making their presence felt. Data 
models for geo-information (GI) can be extended to fully 3D or to 
include a temporal dimension. The term ontology originated in 
philosophy and in computer science is taken to refer to an explicit 
and formal specification of a conceptualization (Gruber, 1995) that, 
in practical terms, comprises an agreed list of terms used in data 
modeling and the relationships between them (Antoniou and van 
Harmelen, 2004). Thus, in GIScience, ontology has to do with how 
we understand terms used in data models and how they relate to 
reality as we might perceive it.

Process models: These link syntax and operations. They represent the 
way in which we handle and manipulate data resident in the data 
structure in order to achieve specific goals. The dominant focus here 
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Figure 3.3
Key aspects of a conceptual model of GIScience.
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Models that connect the key aspects of GIScience.
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is on cartographic processing (e.g., overlay, buffer) and map algebra 
techniques, but also includes the way in which topology is built by 
the software and embedded into the data structure.

Visualization models: These link operations and semantics. They repre-
sent the way in which the software provides views of the data (maps, 
tables, and diagrams) such that we are able to interpret either the 
data itself or the informational outputs of analyses in terms of their 
real world meaning.

Error propagation and sensitivity models: These link operations and 
uncertainty. They represent the software/algorithmic way in which 
uncertainty in the analytical products of GIS-type analyses may be 
assessed either through tracking the propagation of known levels 
of uncertainty from base data through to products or by means of 
sensitivity analysis (SA).

Transformation models: These link syntax and uncertainty. They represent 
the way in which the data held in the data structure are transformed 
either as a restructuring (e.g., vector-to-raster and raster-to-vector), a 
recoding (e.g., reclassification), or as a generalization (or its opposite, 
increased specification). Generalization includes the ways in which 
data or the informational outputs of analysis are simplified to reduce 
complexity or effect a change in scale. Such transformations have 
inevitable consequences for levels of uncertainty that must appro-
priately be managed by the transformation.

Cost/resolution models: These link semantics and uncertainty. They 
represent the way in which data resolution (and by implication the 
manner and cost of data collection) interacts with levels of uncer-
tainty and the real world meaning we can assign to the data and the 
informational products where they are used. Little of this has been 
researched in GIScience to date, though see Burrough et al. (1996) 
for a cost-quality comparison in modeling heavy-metal pollution on 
flood plains. See also an example in Chapter 9. 

We can go farther with this conceptual model. The faces of the tetrahedron 
as subtended by a grouping of aspects and models, represent a number of 
key issues in GIScience (Figure 3.4), plus one integrative issue, which can be 
visualized as either being in the center of the tetrahedron (Figure 3.5) or as 
an outer envelope. They are

Cognitive issues: These relate both to internal representation, use of lan-
guage and metaphors in the way we navigate software, databases, 
and construct solutions to applied problems, and to the way in which 
these assist us in navigating, understanding, and applying solutions 
to the external real world.
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Data quality issues: These relate to how data quality is managed including 
the establishment and use of metadata standards in creating spatial 
data from reality, establishing data reliability, and longevity (shelf 
life) in relation to a specific application and the internal means by 
which quality needs to be maintained during data transformations.

Fitness-for-use issues: These relate specifically to how the fitness-for-
purpose of the informational outputs and analytical products can 
be established. Whereas the previous issue concentrated largely on 
data input, these issues refer to information output as a consequence of 
base data quality and pertinence, the propagation of uncertainty in 
analyses and the visualization both of the outputs and their associ-
ated levels of uncertainty in such a way that they can be correctly 
interpreted in decision making.

Modeling and simulation issues: These concern the way in which analyses 
are carried out using standard functionality, but also including the 
use of embedded computational models (such as for environmental 
simulation), and the use of simulation approaches to establish the 
quality of those models and their analytical products.

Organizational issues: These concern the way in which geodata and geo-
information are organized, handled, managed, and used within an 
organizational setting and, thus, represent an integrative issue con-
cerning all the above aspects and models as well as the other issues 
(Figure 3.6).

An extension of the organizational issues is spatial decision support systems 
(SDSS). These are discussed in Chapter 10. They are a means of finding solu-
tions to ill-structured problems where the nature of the problem itself may not 
be clear, let alone finding a straightforward solution. They are also a means 
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Issues of GIScience as selective groupings of aspects and models.
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of reducing uncertainty in finding appropriate or reliable solutions. Such 
approaches these days often require an organizational arrangement of linking 
GIS with external models in a networked environment. However, they also go 
beyond just technology and must include the wider decision-making environ-
ment. SDSS as an integrative issue in GIScience is conceptualized in Figure 3.7.

All the aspects, models, and issues just discussed have been the focus of 
GIScience research and represent the domain of legitimate scientific ques-
tions alluded to by Goodchild above. The conceptual model described here 
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Figure 3.6
The organizational setting as an integrative issue of GIScience.
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Spatial decision support systems as an integrative issue of GIScience.
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was originally developed as an organizing framework for students to see how 
a curriculum in GIS and spatial analysis hangs together and that it is indeed 
distinguishable as a discipline. The conceptual model is not predicated on 
traditional discipline boundaries, nor is it predicated exclusively on GIS tech-
nology. Nevertheless, as will be evident by now, wherever spatial data are in 
use, then there are a set of substantive issues that need to be understood if 
researchers and professionals, regardless of their disciplinary roots, are to be 
critical users able to evaluate their own work. For this reason, Section III of 
this book looks at a range of issues that arise out of GIScience necessary for 
the application of GIS in environmental modeling and engineering.

And Now … Geo-Information Engineering

Science is about discovering new knowledge and making it available to 
society. Engineering is about applying that knowledge systematically using 
the results of scientific research to successfully and dependably solve real-
world problems. For dependability and minimizing risk of failure, engineers 
rely on scientific laws, design standards, and codes of practice that arise not 
only from the results of scientific research, but also from the accumulated 
experience of applying those results in diverse situations. What is more, 
those diverse situations will necessarily be contextualized and parameter-
ized through their own investigations. As discussed in the previous sec-
tion, we have a body of endeavor that we can recognize as GIScience and 
which has a reasonably mature (though still evolving) technological base. 
Are we then beginning to see the emergence of geo-information engineering 
(GI Engineering)? I believe we are.

GI Engineering has been defined as “the design of dependably engineered 
solutions to society’s use of geographical information” (Brimicombe and 
Li, 2009). Such solutions may be products, such as SatNavs, but may also be 
methods, such as approaches to spatial analysis that reliably support deci-
sion making. The stage is certainly set. Spatial data collection technologies 
have reached maturity in which resolution, precision, speed, time between 
resurvey, and falling unit costs have improved dramatically since the early 
1990s. These technologies may further improve incrementally, but are proba-
bly reaching long-term stable states. Such data will form the raw material for 
GI Engineering. The basic technological infrastructures for GI Engineering 
have also matured—fast, low-cost PCs and handheld devices, computer net-
working (whether cabled or wireless), the Internet, mobile communications—
and, although bandwidth will need to further increase to adequately serve 
GIS applications to thin client mobile devices, there are reliable platform 
configurations to mount GI Engineering applications. There is also a mature 
software environment, not just in terms of GIS packages, but in the level of 
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tool interoperability and ease with which effective wrappers with common 
interfaces can be established to bind a suite of tools. GI Engineering poses 
a considerable and exciting research agenda for GIScience (see, for example, 
Brimicombe and Li, 2009, and issues raised in Chapter 6 to Chapter 10 in 
this book), though there is already a substantial body of results that can be 
applied. Just as research in applied engineering subjects is far from complete 
as new problems, materials, and approaches emerge, so one would not expect 
to have all answers to all possible questions in GIScience before endeavoring 
to produce artifacts of GI Engineering. There are only two real obstacles to 
GI Engineering: clients (or customers) and GI engineers. The former depends 
on the revenue-earning potential of GI as either saleable commodity (e.g., 
just-in-time way finding information, real-time flood forecasting) or contrib-
uting to cost reductions (e.g., reducing the cost to society from crime and 
disorder, natural hazards, pollution, and so on). There is evidence that this 
type of client base is certainly growing both in the private sector (e.g., LBS) 
and in the public sector (e.g., joined-up, integrated government and services). 
The obstacle to achieving a sufficient body of GI engineers will depend on 
how GI studies are taught in universities (Frank and Raubal, 2001).

Bringing forward the conceptual model for GIScience, the conceptual 
model of GI Engineering is shown in Figure 3.8 where there are changing 
emphases on the aspects, models, and issues of GIScience within the specific 
application context—the professional area or discipline being served—as 
well as the scale for both information representation and accessibility. A key 
element though is the design of the solution that brings all the necessary ele-
ments together in an intuitively usable and dependable way.
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4
Approaches to Modeling

Model is an everyday word. Look it up in the dictionary and you are likely 
to find upwards of eight definitions as a noun and four or more as a verb. 
Meanings range from making things out of clay to using mathematics to 
someone who struts down the catwalk. Leaving aside this last category, most 
of the definitions have one thing in common: simplification or reduction in 
complexity. At its easiest, a model is a simplification of reality in terms that 
we can easily understand. As illustrated in Figure 4.1, a map can be viewed 
as a model. 

The types of models that we in the field of the geographical information 
systems (GIS), environmental modeling, and engineering would be most 
interested in are those that express our understanding of the way the world 
works with sufficient precision and accuracy to allow prediction and con-
fident decision making. Such models may be qualitative, pictorial, or more 
usually quantitative and relate to the dynamics and processes of the physi-
cal, social, and economic environment. Many of these models of interest are 
used to explain and/or predict what happens somewhere and the spatial pat-
terns that arise. Because GIS are preeminent in handling spatial data, it is 
natural that efforts have been made to use or link such models with GIS in 
order to have an enhanced management tool. Typical examples of the types 
of models used include:

Regression lines predicting an output variable according to an input •	
variable.
Spreadsheets expressing more complex interrelationships and pro-•	
cesses; manipulation of map layers according to a predetermined 
theory.
A series of mathematical equations describing complex transport •	
and transformation processes compiled as a stand-alone computer 
program.

An important issue that will have to be considered is how external models 
are made to work with GIS, but this will be the subject of Chapter 7. Also, 
since all models are a simplification of reality, they may work more or less 
well in certain circumstances and there will always be a level of uncertainty. 
This is a theme that runs through Chapter 8 to Chapter 10. In this chapter, 
however, we will discuss the nature and construction of models in general 
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terms, and in the following chapter look more specifically at the nature of 
environmental models in the context of GIS. Chapter 6 will focus on a range 
of examples.

Model of an x

Much has been written about the nature, construction, and use of models. 
Of the extensive literature, Harvey (1973) provides an in-depth treatment of 
models in relation to scientific explanation in geography; Taber and Timpone 
(1996) provide a good overview of computational modeling while Deaton 
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A map as a model, a simplification of reality.
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and Winebrake (2000) provide a sound introduction to modeling dynamic 
systems. Martin and Church (2004) have reviewed the development and test-
ing of numerical models of landscape evolution.

Models perform many different functions within a scientific framework. 
Chorley and Haggett (1967) identified the following uses as:

A •	 psychological device that allows complex processes or interactions 
to be visualized and understood.
A •	 descriptive device that allows a stylized view of the main workings 
of a phenomenon or process.
A •	 normative device that permits broad comparisons to be made 
between differing situations or processes.
An •	 organizational device for managing the collection and manipula-
tion of data.
A direct •	 exploratory device and a constructional device in the search for 
new theories or the extension of existing theories.

These are not mutually exclusive and given this plurality, it is necessary 
when constructing and using models to be clear which type of device is 
intended and the appropriateness of any chosen model to act as such a device 
(Harvey, 1973). This plurality is also the reason why we cannot have a single, 
universal definition of a model.

Models are central to the way in which we seek to scientifically explain and 
develop theories about the phenomena we experience in the world around 
us. There are two broad routes to scientific explanation: induction and deduc-
tion (Figure 4.2). Using the inductive route, empirical observations of the real 
world are ordered and classified through subjective generalization. While 
induction offers few safeguards against jumping to the wrong conclusions, 
a theory derived inductively can be represented by an a posteriori model and 
tested for its ability to predict correctly (and, hence, confirm or otherwise 
the veracity of the theory). This route is often used in data mining in order 
to discover and extract knowledge from a large body of existing data. Using 
the deductive route, these same empirical observations are configured into 
a priori models, which, while suggesting a theory, are nevertheless open to 
doubt. This model of an x (Achinstein, 1964) allows one or more hypotheses 
to be deduced and tested through appropriate experimental design. While 
these hypotheses can never be proved in an absolute sense, they can be 
accepted (or rejected) with a certain degree of confidence. Thus, the relation-
ship of models to theories may take a number of forms: discovering a theory, 
extending or restructuring a theory, establishing the domain of a theory, 
validating a theory, representing a theory, and, finally, as a means of predic-
tion on the basis of a theory. All of these are relevant to the domain of envi-
ronmental modeling and engineering. However, it is important to recognize 
that although models are central to explaining our world, they tend to be 
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temporary rather than permanent. Depending on the new question being 
investigated, the specifics of a location where a model is to be applied, or 
even depending on the availability of data, an existing model may need to 
be altered or evolved.

Typology of Models

Just as models can fulfill a range of functions, so models can be classified in 
a number of ways. For example, Ackoff (1964) classified models into:
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Inductive and deductive routes to scientific explanation.
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Iconic•	 : Using same materials, but with a change in scale.

Analogue•	 : Having changes in materials as well as scale.

Symbolic•	 : Use of a symbolic system, such as mathematics.

While at first this typology may seem reasonable, it is, in fact, restrictive 
when, for example, we look at concepts of using natural language and maps. 
A more useful classification, from the perspective of this book, is loosely 
based on Chorley and Haggett (1967) and is comprised of models that are:

 1. Natural analogues: This is the use of some past event to explain the 
present (historical analog) or use of events in one place to explain 
events in another (spatial analog). These are frequently descriptive 
models but, can also use diagrams and maps.

 2. Hardware: This is where a physical miniaturization of a phenome-
non is created out of the same or similar acting materials in order to 
study development, general behavior, changes in state, influence of 
variables, and so on.

 3. Mathematical: This is where a phenomenon and its workings are 
described using equations, functions, or statistics. Where the model 
provides a unique solution, then it is labeled deterministic. On the 
other hand, where the model takes account of random behavior and 
provides a probabilistic answer, then it is labeled stochastic.

With the rise of ubiquitous computing over the past 25 years, we should 
now add a fourth category:

 4. Computational: This is where a computer is used for symbolic manip-
ulation (using code and data) in order to express phenomena and 
their workings. Such models may include deterministic and/or 
stochastic elements alongside heuristics (rules), logical operators (if, 
then, else), set operators (and, or, not), text operators, and so on. Since 
most mathematical models are now implemented using a computer, 
one could be forgiven for confusing the difference between math-
ematical and computational models. Mathematical models are for-
mal, that is, are constructed in accordance with recognized forms 
and rules that have a truth condition (an accepted means of proof). 
But many real-world phenomena we would like to model are too 
intractable to be reduced to a formal mathematical model; specific 
elements may be, but not the whole thing. Computational models, 
on the other hand, while perhaps offering less precision and clarity, 
do offer greater flexibility and can increase the level of realism. From 
another perspective, mathematical models can be used without a 
computer while for computational models, computers are central to 
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the form of enquiry. Computational models allow complex experi-
ments to be conducted that for ethical, logistical, and cost reasons 
can’t be carried out in reality. Thus, studying the effects of chang-
ing CO2 concentrations in the atmosphere is not an experiment that 
can be conducted live, but can be computationally simulated. It is 
also worth making the distinction here between monolithic and dis-
tributed component approaches to computational modeling. Under 
monolithic approaches, a computational model is programmed so 
that all the necessary components are explicitly written into the 
code. This has been the predominant approach in creating GIS and 
environmental modeling software; it results in large software pack-
ages that can only be run on sufficiently powerful computers. The 
currently evolving distributed component approach allows program 
elements to be developed independently and called for reuse by dif-
ferent computational models (even across a network) as and when 
required. This is the principle behind the use of, say, Java classes 
in object-oriented software development (see, for example, Faulkner, 
2002) and provides for the possibility of software to run on thin cli-
ents typically through an Internet browser interface.

For each of these four classes of models, it is possible to add further descrip-
tors depending on the role of time, the degree of specification of the model as 
a system, and the way in which the model is being used. Thus, for example, 
a computational model might be:

Static•	 : Where the elements of the model are fixed over time or where 
the model focuses on an equilibrium situation.
Dynamic•	 : Where variables in a model are allowed to fluctuate in 
time.
White box•	 : Where the internal workings of a model representing a 
system are fully specified.
Grey box•	 : Where the internal workings are only partially specified.
Black box•	 : Where the internal workings are not specified, for exam-
ple, the details of how inputs are transformed into outputs are not 
known, but co-vary in some observed way.
Exploratory•	 : Where models seek to reveal the workings of some 
phenomenon.
Prescriptive•	 : Where models are used to provide answers, such as 
what will be the outputs, given certain inputs.

These are further discussed below within a dual framework of modeling 
landslides as one form of natural hazard, and modeling topography as con-
tinuous surfaces being typical functionality within GIS.
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Building Models

The type of model one sets out to build ultimately depends on the use to 
which the model will be put, the extent to which the processes of the system 
are known, and the time and resources available to build and test the model. 
Though, more often than not given the abundance of models already devised, 
it is often a case of identifying which model(s) best fit or can be adapted to the 
desired modeling objectives within acceptable limits of uncertainty and for 
which suitable data are likely to be available or can be collected (see Beven, 
2001). However, the starting point of any good project that will devise or use 
models is some observation, speculation, or consternation that drives one to 
find a satisfactory answer or solution (Lave and March, 1993). Clearly one 
needs a good understanding of the existing theory and domain knowledge 
relevant to solving the substantive question at hand and it can even be stated 
that without this knowledge one is unlikely to raise these questions in the 
first place. So understanding the relevant literature is paramount.

It is the regularities or patterns that most often catch our attention or inter-
est. These empirical observations are at the heart of modeling—both for sug-
gesting the possibility of models and for validating these models against 
reality. Patterns, either directly observed or “discovered” through explor-
atory analyses are often the means by which we can hypothesize or infer 
the presence of underlying processes (Fotheringham, 1992; Unwin, 1996; 
O’Sullivan and Unwin, 2003). The presence of a process that can be more 
or less understood allows us in turn to produce models. Models allow us to 
manage. The types of patterning referred to here are very broadly defined 
from the arrangement of objects in space (e.g., volcanoes, traffic accidents, 
cancer patients), morphological regularity (e.g., alluvial fans, floodplains), 
regularity in time (e.g., tides) and input–output response regularities (e.g., 
high rainfall resulting in floods). Patterns detected through spatial data anal-
ysis are usually broadly classified as random, regular (uniform), or clustered 
(Cliff and Ord, 1981). There is a widespread tendency to assume that spatially 
random data have no underlying process of interest that can be modeled, but 
as Phillips (1999) pointed out, such apparent randomness may be attributable 
to chaotic, complex, deterministic patterns. For spatial regularity to occur, a 
space-filling, mutual exclusion process can be hypothesized (such as competi-
tion between plants for space and light). Nevertheless, it is clustered patterns 
that raise the strongest hypotheses for and interest in identifying underlying 
processes and have an important role, for example, in such diverse areas as 
spatial epidemiology (Lawson, 2001), crime analysis (Goldsmith et al., 2000), 
knowledge discovery in large databases (Miller and Han, 2001), and statisti-
cal approaches to landslide hazard assessment (van Westen, 1993; Aleotti 
and Chowdhury, 1999). That said, there are times when irregularities catch 
our attention particularly when such irregularities do not conform with or 
would not seem to be predicted by the prevailing theories. Models in these 
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instances may lead to the emergence of new theories. Whatever the spark, 
building a model presumes the existence of a theory or hypothesis.

It is as well here to introduce the two modeling examples for landslides 
and topographic surfaces as they will help in understanding the process of 
building, evaluating, and applying models. Two good references for more in-
depth material are Turner and Schuster (1996) and Burrough and McDonnell 
(1998), respectively. Each example area will be introduced, the theory stated, 
and an explanation of how aspects of the simpler models are constructed. 
This is not intended to be an exhaustive technical treatment, but a means of 
illustrating model building.

Modeling landslides

Landslides, stated simply, are the mass movement of soil and/or rock down 
a slope. They have been observed and recognized as serious hazards since 
time immemorial. Individual landslides can vary in size from just a few 
cubic meters to tens of cubic kilometers (e.g., Rossberg, central Switzerland 
in 1806; Bindon, south coast of England in 1839; Elm, Switzerland in 1881; 
Vaoint, northeastern Italy in 1963 with loss of about 1,900 lives; Armero, 
Columbia in 1985 with an estimated loss of 20,000 lives). The economic and 
social costs of landslides worldwide are getting higher with increased urban 
development and population densities. Total annual cost of landslides in 
Japan is estimated as $4 billion while in Italy, India, and the United States it 
is estimated as $1 billion to $2 billion each per year (Schuster, 1996). Loss of 
life worldwide due to landslides is estimated by the same source as having 
averaged well above 600 a year during the twentieth century. The initial per-
ception of an explainable regularity was that landslides didn’t just happen 
at random, they occurred almost exclusively during earthquakes (includ-
ing tremors associated with volcanic eruption) or heavy rainfall and that 
there was also a tendency toward morphological regularity, as illustrated 
in Figure 4.3.

The theory underpinning landslide events can be stated verbally as: A 
slope will fail as a landslide when the strength of the slope materials fall 
below or is exceeded by the downward forces acting on the slope. Like most 
theories stated verbally, it seems simple and obvious—if the slope has enough 
strength, it will stand; if it doesn’t, it will fail. However, if we are to create 
models that allow us to identify which slopes are in danger of collapse, we 
need to flesh out this theory in terms of its physical parameters that allow us 
to construct one or more models within the typology given above on page 
67. By expressing our verbal theory in the form of an equation, we can move 
from a perceptual to a conceptual model:

 
F = shear strength

shear stress
 or rephrased, FF = resisting moment

disturbing moment
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By substituting in the relevant parameters, this can be expressed as:

 F c= + σ φ
τ
tan

 (4.1)

where F = the factor of safety (FoS), c = cohesion of the soil, σ = normal stress 
on the slip surface, φ = angle of internal friction, τ = shear stress. This is for 
soil slopes (rock slopes are modeled more in terms of discontinuities (joints, 
faults) within the rock mass). If FoS ≥ 1, then the slope will stand; if FoS < 1, 
then it will fail. The cohesion of the soil can be roughly translated as its sticki-
ness (e.g., clay has high cohesion, sand has low cohesion), normal stress is the 
amount of compression acting on the slip surface to stop movement along it, 
angle of internal friction can be visualized as the angle of repose permitted 
by the interlocking of the individual soil grains while the shear stress sub-
sumes a number of elements, such as weight of the soil mass, angle of the slip 
surface, and the internal pore-water pressure. Of course, in the eyes of a geo-
technical engineer, this is a gross simplification, but it serves the interest here 
of keeping things easy so that we can focus on modeling issues. Water, for 
example, affects both shear strength and shear stress: a film of water around 
individual grains creates surface tension and adds to cohesion (e.g., wet sand 
has the ability to stand at a steeper angle than dry sand) yet down slope flow 
of water within the soil as a consequence of rainfall not only adds weight, 
but exerts positive pore-water pressure that increases shear stress. Clearly 
there are many possible parameters, each of which needs to be measured in 
the field or laboratory (or simply estimated on the basis of experience and 
secondary data), with a different mix of parameters depending on whether 
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the slope is considered to be drained or undrained, the shape of the critical 
slip surface, the presence of tension cracks, seepage of water, binding effect of 
tree roots, and whether or not the slope is loaded (e.g., a building foundation). 
This has led to an abundance of models, some of which are considered to be 
“standard” approaches (e.g., Janbu’s method (Janbu, 1968)) and those that are 
modified for specific problems encountered on projects. Nevertheless, once 
the relevant parameters have been selected and their values ascertained, 
slope stability equations like (4.1) above represent deterministic models. Plug 
in the values and calculate the answer. A computer program is usually writ-
ten to achieve this, particularly if there are unknowns that need to be solved 
by simultaneous equations and/or the solution needs to be approached itera-
tively. The computer code is the procedural model that represents the concep-
tual model. The FoS of a soil slope is, however, by no means static over time. 
It is generally accepted that under natural conditions, the FoS of a slope will 
decrease over the long term primarily due to weathering, where weather-
ing acts to reduce the shear strength through weakening of the materials. 
Cutting at the base of a slope, either naturally by streams and rivers or due to 
excavation by man, increases the effective steepness of a slope and the sheer 
stress. Such action may not lead to immediate failure, but rather makes a 
slope susceptible to triggering events that cause a sharp decrease in the FoS 
to less than unity (Figure 4.4). There are generally two such events. The first is 
seismic shock whereby the shaking reduces the strength of the soil and tem-
porarily increases the pore-water pressure thus leading to liquefaction. The 
second is heavy or prolonged rainfall, which can result in high pore-water 
pressures as the water moves downhill within the slope (the same effect can 
be achieved by rapid draining or draw down of reservoirs and canals, and by 
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rapid snowmelt). It is clear from Figure 4.4 that a high magnitude event may 
not cause failure of a slope, but may cause weakening so that a later lower 
magnitude event may be the trigger that causes final failure.

All of this gives increasing complexity to which can be added considerations, 
such as the spatial nonuniformity of weathering (and, hence, soil parameters) 
over quite short distances and that hidden discontinuities can lead to local-
ized weaknesses. As Beven (2001) remarked for hydrology, “There is one fun-
damental problem … most of the action takes place underground.” So, too, 
with landslides. There are even legal issues in defining when a landslide has 
occurred (e.g., for insurance purposes) and what the causes of that landslide 
were (Griffiths, 1999). Where relevant parameters may not all be known or 
where they may not be accurately quantified, deterministic models are diffi-
cult to apply on complex natural slopes as opposed to many manmade slopes 
(cut and fill during construction, dams, and embankments). In cases where 
large areas need to be assessed for hazard, alternative modeling approaches 
can be adopted (see Aleotti and Chowdhury (1999) for a summary review).

One qualitative approach is the use of historical and spatial analog models. 
Here the theory is treated as a black box. The exact causes of failure may not 
be known nor is the FoS for each slope known. Rather, the visible presence 
of landslide scars in relation to the general geology, geomorphology, land 
use, and climate allows us to infer, on the basis of theory, the extent to which 
slopes can be categorized as “stable,” “marginally stable,” and “unstable,” 
the likely mode of failure, and the likely trigger mechanism or mechanisms. 
By mapping and thus understanding one area, some broad predictions about 
future landslides can be made for that same area (historical analog) or for 
another area where similar conditions prevail (spatial analog). Bulut et al. 
(2000) show that by contouring percentage landslide per unit area (density 
of landslides) as a result of a rainstorm event in 1983 in the Findikli region 
of Turkey, the hazard zonation that these contours represented was found 
to be a reliable model in relation to the landslides that occurred over the 
subsequent 12 years. As will be further discussed in the next chapter, such 
models are eminently GIS-able. Figure 4.5 provides an example of the type 
of landslide mapping that has been described here.

As discussed above, Equation (4.1) looks simple, but a parameter, such as 
τ (shear stress), represents a bundle of parameters; additional parameters 
can be added to represent special conditions (e.g., seepage of water) and, if 
the slip surface is likely to have a complicated geometry, the entire calcula-
tion can become elaborate and cumbersome despite the use of computers. 
Therefore, some researchers have sought empirical equations that are easier 
to use for direct estimation of FoS. One solution is that of Sah et al. (1994) that 
represents a stochastic model in as much as it gives an answer that has the 
highest probability of being correct. Sah and his co-researchers took 46 cases 
of slope stability analyses for circular slip failure as reported in 38 publica-
tions from 1948 to 1988 from different locations around the world. Taking the 
model to be a linear regression equation in the form:
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 Fi = αXi + βYi  (4.2)

where Fi = estimates of the FoS for each case i = 1, 2, ..., n, α, β = constants to 
be determined, Xi, Yi = variables defining the characteristics of each slope 
such that:

 X c
H

= ⋅
⋅

cosec ψ
γ

 (4.3)

 Y r= − ⋅ ⋅( ) cot tan1 ψ φ  (4.4)

where c = cohesion of the soil, φ = angle of internal friction, r = pore-water 
pressure ratio, γ = unit weight of soil, ψ = slope angle, H = height of slope.

The maximum likelihood estimates of α and β are obtained by solving the 
normal equations:
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Figure 4.5
An example of landslide hazard mapping as an analog model—landslide density in relation 
to villages and roads.
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The final equation was thus:

 F c
H

r= ⋅
⋅







+ − ⋅ ⋅2 27 1 54 1. . ( ) cot tancosec ψ
γ

ψ φ  (4.6)

This, too, is GIS-able (an ArcGIS implementation is given in Sakellariou 
and Ferentinou, 2001). Comparing results calculated using Equation (4.6) 
against a full implementation of Equation (4.1) for the 46 case studies used by 
Sah et al. gives a close fit, as given in Figure 4.6.

Modeling Topography

After landslides, with much of the action taking place underground away 
from view except for the final defining event of a collapsing slope, one might 
well think that modeling topography, which we can all see and stand on, 
would not pose any difficulties. Think again. Traditionally, it has been nei-
ther feasible nor economically viable to measure every square meter let alone 
every square centimeter of a topography. New technology, such as LiDAR 
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(light detection and ranging), has its ability to quickly produce accurate, 
high-resolution topographic data, but is tending to produce overly dense data 
sets. The time-honored approach has been to sample the topography in some 
way to obtain a point data set that is then interpolated to create contours or 
a gridded digital elevation model (DEM). Contours and DEM are themselves 
models as they are simplified representations of reality. But, given a sample 
set of point measurements, we need a means of modeling (deterministically, 
stochastically, or computationally) the entire topography from them. There 
are many such models (see Davis, 1973; Lam, 1983; Burrough and McDonnell, 
1998; de Smith et al., 2007), but all are founded on the same broad theoret-
ical principle, what Tobler (1970) refers to as the “first law of geography,” 
namely that “everything is related to everything else, but near things are 
more related than distant things.” It is almost impossible to imagine a world 
in which there was no spatial and temporal dependence—it would be chaos. 
There would be no structure or regularity of form to our landscapes and 
an absence of predictable processes in the environment (Atkinson and Tate, 
2000). The act of contouring is only possible because at any one point there 
is an adjacent point of the same magnitude that can be joined in a line. Thus, 
for contours of elevation, atmospheric pressure (isobars), rainfall (isohyets), 
and so on, spatial dependence is a necessary prerequisite. The inverse distance 
weighted (IDW) method is one of a class of linear interpolators used to calcu-
late a regular grid of points from a pattern of measured points, an entirely 
separate algorithm then being used to thread the contours. IDW calculates 
the value of an unknown point (on the regular grid) by averaging the known 
data points within the neighborhood. But, in the spirit that near points are 
more related than distant points, the known points are weighted inversely 
according to their distance from the point being calculated. Thus, the further 
away a known point is, the less influence it has on determining the value for 
the unknown point. The formula (a mathematically deterministic model) is 
given as:

 Z z d dij k k
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=
∑ ∑

1 1

 (4.7)

where Zij = elevation of the unknown points in a grid, zk = elevation of the 
known points from a survey, dk = distance between a known point and the 
unknown point, r = a power weighting function.

The power function r determines the rate of distance decay of the weight-
ing (Figure 4.7), the initial default value in practice usually being r = 2. As 
can be appreciated, this deterministic model of interpolation can be applied 
not just to topography, but more or less well to any spatial point measure-
ment whether on the ground, above ground, or, indeed, underground. The 
formula (4.7) is easy enough to calculate, but identifying which known 
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points are relevant, calculating the distances, summing the values, and then 
working one’s way around all the unknown points becomes cumbersome 
and tedious to say the least. Therefore, it is usual to create a computational 
model that reads a data file, asks for the necessary parameter values, creates 
the regular grid of points to be calculated, proceeds in a loop to calculate the 
values, and finally stores them. The same computer program may also run 
straight on with a second computational model that threads and displays the 
contours. IDW is often a basic function of GIS packages and is commonly 
offered in environmental modeling packages where interpolation of point 
data is required. A computational model for IDW interpolation to a regular 
grid is illustrated in Figure 4.8. IDW can be regarded as an exact solution 
because for any unknown point spatially coinciding with a known point, the 
zi value of the known point, will be copied to zj without change (Lam, 1983; 
Burrough and McDonnell, 1998). Nevertheless, depending on the parameter 
settings, such as r, any other unknown points are necessarily estimated based 
on the model. Also, since the resultant topographic surface is modeled from 
a single measured sample of n points, it needs to be understood as just one 
realization of the true topography.

Spatio-Temporal Dimensions and the Occam–einstein Dimension

Natural processes, such as those which environmental modelers set out to 
understand and simulate, have a tendency toward characteristic scales in 
space and time. This was discussed in Chapter 2. We, therefore, can con-
sider two dimensions, one being the time for completion of the process being 
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modeled, the other being the size of area affected by the process (Figure 4.9). 
In the current context, these two dimensions are not independent as, in gen-
eral, processes that are of short duration tend to affect small areas (e.g., soil 
detachment by a raindrop), whereas processes of long duration tend to affect 
large areas (e.g., tectonic processes shaping whole continents). There are of 
course possibilities for high magnitude, short duration processes to affect 
large areas (e.g., the eruption of Mount St. Helens on May 18, 1980 devastated 
some 500 km2 in a matter of minutes, although one could argue that the real 
length of the processes leading to this event was much longer). Figure 4.9 
shows an envelope of spatio-temporal domains where the shape shows both 
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the general trend and allows for short, high magnitude events. The model 
builder needs to determine at the outset, even implicitly, which portion of 
the envelope is relevant to the spatio-temporal domain of the process being 
modeled, as this has implications for data, parameters, discretization (see 
Chapters 5, 8, 9, and 10), model complexity, and so on. Even if done implicitly, 
based on the type of process under consideration, it is nevertheless worth 
recognizing as it helps maintain a certain consistency between model objec-
tives and the various elements of the modeling.

However, there is another dimension we need to consider in model build-
ing: simplicity. On this particular axis is a continuum of models from the 
fullest possible complexity that approaches as near as possible to reality, to 
highly simplified models with gross levels of abstraction. This is entirely 
a modeler’s choice within the available science and resources to determine 
parameters. One general goal of science, though, is not to make models more 
complex than they need be, that is, to apply the so-called Occam’s razor. 
William of Occam was a fourteenth-century Franciscan monk who encour-
aged a scientific approach to research and is attributed with the maxim, 
“Entities are not to be multiplied without necessity,” but, in fact, said, “It is 
vain to do with more what can be done with fewer” (in Russell, 1961), but 
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which has the same effect. (Of course, Occam’s political and scientific views 
did not find favor with Pope John XXII and when forced to seek the protec-
tion of Emperor Louis at Avignon (France), he equally famously said, “Do 
you defend me with the sword, and I will defend you with the pen.”) While 
unnecessary bulkiness of models should be avoided, Occam’s razor needs to 
be applied carefully so as to remove only those features of reality that can be 
safely ignored. Taber and Timpone (1996), therefore, have named the simplic-
ity dimension as “Occam’s dimension,” but since Einstein further encapsu-
lated this concept by variously saying, “The best explanation is as simple as 
possible, but no simpler,” I would prefer to call it the Occam–Einstein dimen-
sion. When coupled with the spatio-temporal dimensions (Figure 4.10), we 
have a conceptual 3D modeling development space. A model first needs 
to be appropriately positioned in the spatio-temporal domain. Then, it is 
moved along the Occam–Einstein dimension either because it is unnecessar-
ily complex such that the number of parameters can be reduced, or because 
it is too simplified and more parameters need to be incorporated. Moving 
along the Occam–Einstein dimension always has implications for the num-
ber of parameters with relatively complex models requiring larger numbers 
of parameters (all of which will need to be quantified). As Kirkby (2000) 
points out, increasing the number of parameters will, in general, increase 
the accuracy of model outputs but, at a diminishing rate with each new 
parameter that is added and with a corresponding increase in complexity of 
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calibration and finding optimum parameter values. In computational mod-
els, the Occam–Einstein dimension can also be applied to the efficiency of 
algorithms in terms of length of the code, speed of execution, amount of disk 
read–write, and so on.

Evaluating Models

Models must satisfy some desired level of utility. Such utility is not just 
concerned with providing acceptably “correct” levels of understanding or 
answers to problems, but includes notions of reliability, validity, beauty, 
and justice. We will consider these issues here in the general way that they 
affect approaches to modeling. Specifics will be dealt with at greater length 
in Chapter 9.

There are a number of terms dealing with the evaluation of models deriv-
ing particularly from the ecological sciences (Oreskes et al., 1994; Rykiel, 
1996; Mazzotti and Vinci, 2007). The term verification refers to the correct-
ness of the internal structure and working of a model while the term vali-
dation refers to the model performance and its applicability to a subject 
domain. A further activity, calibration, is the adjustment of parameters 
and constants to improve model agreement with an observable reality. 
Verification, validation, and calibration are integral to producing reliable 
models. Firstly, however, it must be recognized that there is no automatic 
means of telling when a model is finished. In the sense that theories are 
not verifiable but might indeed be falsified by new evidence and that new 
hypotheses continue to be established, a model should never be consid-
ered finished in an absolute sense—it lasts while its underlying theory 
stands and there is some utility in its use. Nevertheless, a sort of paralysis 
by analysis is equally undesirable as a model is made increasingly com-
plex by the addition of hypotheses in the search for perfection even as its 
application is kept on hold. No model will provide perfect predictions. This 
is inherently so because models are necessarily simplifications of reality. 
What is desired is an acceptable fit with the observed reality that is being 
modeled. Issues surrounding this notion of fitness-for-use will be consid-
ered at depth in Chapters 8 and 9. In general, this involves a comparison 
between some observed data and the simulated outputs, often somewhat 
restricted to the statistical distribution of residual errors (observed values 
minus the expected values), to see if an acceptable goodness-of-fit has been 
achieved (Beck et al., 1993). While we all don’t have the stature and confi-
dence to brush off a poor fit by saying, as did the physicist Paul Dirac, “It 
is more important to have a beautiful theory, and if the observations don’t 
support it, don’t be too distressed, but wait a bit and see if some error in 
the observations doesn’t show up” (Ferris, 1988), he does have a point—our 
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observed data with which we validate models are rarely perfect either. The 
testing of output validity usually starts with postdiction (or hindcast), that 
is, being able to model some past event (for which data are available) to an 
acceptable level of accuracy. Having achieved this, models are often used 
straightaway for prediction of future events, but performance of the model 
should again be checked against reality when those events do happen.

There are two further issues that need to be discussed. The first of these 
is the reality of the process versus getting an answer that fits. This is process 
validity. For instance, the model of an Earth-centered universe favored by 
Aristotle and Ptolemy gave accepted answers (for several centuries) to the 
observed solar, lunar, and planetary motions, yet, as we now know, it was 
wrong. I’m not suggesting that the models we use today are so fundamen-
tally flawed, but that in the process of abstraction, use of analogies, identifi-
cation of appropriate mathematical and computational approaches, choice of 
parameters, and so on, there is always the danger that the resultant model no 
longer properly reflects the intended theory. Of course, a black box model in 
no way describes the actual processes at work, it merely transforms inputs to 
outputs, such as by using a regression equation. But even regression models 
can go astray in as much as the corelation between dependent and indepen-
dent variables may be indirect (through an intervening variable) or may even 
co-vary according to some prior variable. The other issue is that of reliability, 
that is as interpreted here, the ability of models to give consistently similar 
results in similar situations or for similar events. For a simple deterministic 
model, one would naturally expect the same output values each time the 
same parameter input values are used. But for complex stochastic models 
using, say, a Monte Carlo simulation in one or more elements, then slightly 
different results within a known range can be expected. How any model 
reacts to slight changes in any particular parameter can be a complex matter 
to establish and is usually evaluated through methods of sensitivity analysis 
(see Chapter 9).

Finally, in evaluating models, one can consider the issues of beauty and 
justice (Lave and March, 1993). Paul Dirac has already been quoted as saying 
that it is important to have a beautiful theory. In modeling terms, beauty con-
cerns not only aesthetics, but also the Occam–Einstein dimension of achiev-
ing fitness-for-use through simplicity. This is difficult to describe in words, 
but if we examine the quintessential example of Einstein’s E = mc2

 which 
essentially says that matter is “frozen” energy, it is a small, neatly stated for-
mula that expressed what was then a new and surprising view of the universe 
(a very large, complex phenomenon). Yet, it is also the broader implications 
of the formula, its generalization, that adds to its notion of beauty; examples 
being the thermonuclear processes of the sun and nuclear power (as well 
the atomic bomb). It is a combination of surprise and fertility. As for justice, 
models often play a practical role in informing policy and planning deci-
sions and while we must hope that such application of our models are for 
the good of society (by providing valid outcomes to the debates) and are not 
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used maliciously, we cannot ignore any unpalatable truths they may serve 
up. However, when models become used in the public domain, their cre-
ators unfortunately have little or no control on how they are applied. Thus, 
Einstein was appalled by the atomic bomb and what he expressed as the 
“drift toward unparalleled catastrophe” (Augarde, 1991). Indeed the 52,000 
tons of spent nuclear fuel and the 91 million gallons of radioactive waste 
from plutonium-processing currently stockpiled in the United States alone 
(Long, 2002) could in some sense be seen to be a terrible consequence of the 
beautiful E = mc2.

Applying Models

This is the ultimate goal of building models. But even here some caution is 
required. Harvey (1973) considers that the remark of Beach (1957) concerning 
the “history of economic thought [being] to a very large extent … a history 
of misapplied models” can be repeated to a greater or lesser degree for most 
academic disciplines. In our modern litigious society, applying models can 
bring liabilities with them and, where reasonable care has not been exer-
cised, then a case of negligence can arise (Epstein, 1991; Miles and Ho, 1999). 
So, it is not just the art and science of building good models, but also the art 
and science of applying them well. An obvious first step is in identifying that 
a model can be appropriately applied to the specific problem at hand. This 
requires the modeler to understand the implications in any choice of theoret-
ical approaches to the problem and how these have been incorporated into a 
model. Such can be the profusion of models these days that it is not surpris-
ing that practitioners can have difficulty in choosing from amongst them. 
The financial outlay in purchasing models for evaluation is likely to be pro-
hibitive. This has led to the need for reviews, such as that of the ASCE Task 
Committee on GIS Modules and Distributed Models of the Watershed (1999). 
Model choice may not rest solely on the theoretical underpinnings, versatil-
ity, or whether it runs under Linux or Windows, but is likely to include con-
siderations on the specifics of parameterization and the likely availability of 
the necessary data. In practice, one will tend to begin by applying simpler 
models with fewer parameters which, however, tend to be somewhat blunter 
instruments. As experience and confidence grows, the level of modeling 
complexity can be increased. Confidence in using a particular model (or it 
could be a suite of complementary models) comes from achieving consis-
tently useful results first in replicating a process or system for known events 
in a particular situation, then for a variety of situations at the same and/or 
at different sites and finally across different scales of space and time. At any 
point, one must be ready to recognize the limits of the model and when these 
limits may have been reached or transcended.
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Having chosen to apply a particular model, there are two critically impor-
tant activities: parameterization, that is determining accurate values for the 
parameters of the model, and calibration, which is the adjustment of param-
eters to improve goodness-of-fit to known events (postdiction) prior to use 
for prediction. Since “the specific relationship between the general model 
form and the physical system being studied is gained via the model param-
eters” (Kirkby et al., 1987), the success of any application lies in the correct 
determination of parameters. Although these issues will be dealt with fur-
ther in Chapter 9, they can be usefully introduced here by returning to the 
IDW modeling of topography described above. In applying IDW the topog-
raphy must first be sampled. This in itself is by no means straightforward as 
there is considerable choice of random and nonrandom sampling approaches 
(Harvey, 1973; Walford, 1995) and then there is the question of sample size—
how many data points to collect. A decision about these usually needs to be 
mediated between the nature of the topography (e.g., grain, degree of dis-
section, presence of break lines), the chosen method of data collection (e.g., 
ground survey, photogrammetry) and the way in which IDW models topog-
raphy. Given a data set, running the model needs two further decisions: (1) 
the minimum number of known points to be included in the calculation of 
an unknown point and (2) the value to be assigned to the power weighting 
function r. The effect of these choices on the result can be illustrated in the 
following example.

Figure 4.11 shows a small area of our example topography. This topogra-
phy has been mathematically generated so that we can know the true value 
z of the topography for any point on the surface. The formula that generated 
this topography and, of course, Figure 2.2 in Chapter 2, is

 z = 100 × (1 + sin(0.5y + sin(0.5x))) + 0.02y + 0.04x  (4.8)

Use of the sine function produces the wavy periodicity in the topography 
of curving ridges and valleys, while the last two terms produce a general 
lowering of the topography from northeast to southwest. In Figure 4.12(a), 
a random sample of 25 points has been generated for which true z has been 

Figure 4.11
A portion of the example topography.
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calculated using Formula (4.8). To this has been added the four corner points 
so that the IDW interpolation can realistically cover the whole area of the 
map (more on this issue below). The sample for such a surface is quite small 
and it is unlikely that the IDW interpolation will produce a good fit, but this 
serves to illustrate a few issues in this chapter and in Chapter 8 and Chapter 
9. In IDW interpolation, the parameter r needs to be set as well as the mini-
mum number of sample points to be used in calculating an unknown point. 
Assuming a target grid of 25 m and the minimum number of points is fixed 
at 6, we can test the influence of parameter r by progressively increasing its 
value. For each interpolation, we can measure the deviation of the interpolated 
topography from the true topography using the root mean square error (RMSE) 
given in Chapter 8, Formula (8.1) by using map algebra. In practice, such true 
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Samples for inverse distance weighted (IDW) interpolation and resulting residual errors: (a) 
random sample, (b) residual errors from IDW interpolation of random sample when r = 4 giv-
ing RMSE = ±37.53 m, (c) purposive sample, (d) residual errors from IDW interpolation of pur-
posive sample when r = 4 giving RMSE = ± 19.49 m.
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values for topography would not be known and a sample of points would 
be withheld from the IDW interpolation and used to calculate the RMSE; 
with our true topography, we can do a more thorough evaluation. Figure 4.13 
shows a graph of r against RMSE and it is clear that as r is increased in value 
from 1 to 3, dramatic improvements in the interpolation are achieved. RMSE 
reaches a minimum at r = 4 and then rises again with subsequent increases in 
r. Therefore, r = 4 is the optimum value for this parameter giving an RMSE = 
37.53 m (still not very accurate, however). The spatial distribution of residual 
errors (observed minus expected) for r = 4 is given in Figure 4.12(b). To briefly 
look at the influence of sampling method, Figure 4.12(c) shows a purposive 
sample using the same number of sample points that have been placed on 
the topography to try and pick out better the ridges and valleys. For r = 4, the 
RMSE is now reduced to 19.49 m, nearly half of what it was before. The spa-
tial distribution of residual errors is given in Figure 4.12(d) for comparison. It 
should be pointed out that while r = 4 has been found to be an optimum, this 
is only for this sample in relation to this topography. In modeling, the search 
of optimum parameters or near-optimum parameter sets needs to be carried 
out for each application.

This example also allows us to make the important distinction between 
interpolation and extrapolation when applying a model. Interpolation can be 
defined as the estimation of intermediate values from surrounding known 
values. The two key words here are “intermediate” and “surrounding.” In 
other words, the estimated values must fall within the topological set of 
known values. In the current example, this set has spatial limits that can 
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most easily be visualized as the convex hull of sampled points. A convex hull 
is similar to fitting an elastic band around all the known points in that it will 
form an outer polygon such that none of the internal angles will be greater 
than 180°. Extrapolation, on the other hand, is the estimation of values beyond 
the limit of known values. The estimation of these values is not bound within 
the topological set of the known values and may (or may not) fall outside 
the predictive limits of the model. Thus, in the IDW example, any grid val-
ues calculated outside the convex hull would have been extrapolated and 
may, depending on the nature of the topography, be wholly unreliable. This 
is why the four corner points were inserted into the samples in the above 
experiment to optimize r so as to avoid extrapolation. On the other hand, 
the extrapolation of say, the regression line in Figure 4.6 and Figure 5.5(b) 
in Chapter 5 beyond the given data would seem entirely reasonable and is 
often used for statistical prediction. Models of physical processes are usually 
designed to explain and predict behavior over a particular range of spatial 
and temporal scales. Each new application of a model is likely to be for a 
different size area and may need predictions for different time scales. Can a 
model work equally well across different scales; this is the issue of scalability. 
For example, a water quality model may have been designed to give reliable 
results for small- to medium-size drainage basins with daily calculations. 
The estimation of input parameters, while adequate for calculation of outputs 
at an aggregate daily level, may not be accurate enough to reliably calculate 
hourly outputs. Similarly, the same model might not work well for very large 
drainage basins. However, this is not just a matter of scale-dependence of 
parameter estimation or whether the physical processes at different scales 
might require more or less complex modeling, it is also about the validity of 
aggregation (lumping of either of inputs or of outputs) in that the usual out-
come is to reduce heterogeneity and is likely to bias results. van Beurden and 
Douven (1999) have studied this dilemma in relation to national level results 
on pesticide leaching into groundwater for policy makers in The Netherlands 
(Chapter 9, Figure 9.6). They consider two approaches: aggregate parameters 
to a national level and use them in a model, or run models on local data 
and aggregate the outputs. Aggregating by averaging up resulted in the two 
approaches giving completely different answers. Given that policy makers 
prefer only one set of results to work with, the professional modeler has to 
have strategies for dealing with the inherent uncertainties of model applica-
tion. This issue underscores Chapter 8 to Chapter 10.

A Summary of Model Development

Model development is more often than not a long and winding road, but 
one that nevertheless is amply rewarded in terms of our understanding 
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of phenomena and how we might manage them. The process of how we 
arrive at a workable model and apply it dependably is, as is evident from 
this chapter, a multistage approach with its own positive and negative feed-
back loops. This model of model development is best expressed diagram-
matically and is given in Figure 4.14. This chapter has been about generic 
modeling issues, the next chapter will focus specifically on the nature of 
environmental models.
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5
The Role and Nature of 
Environmental Models

Models can only be fully understood within the context that they are built 
and used. In Chapter 4, we took a broad look at the purpose of modeling, 
the various forms they may take, and, in a generic way, how they are con-
structed and applied. Now we need to look more specifically at the nature of 
environmental models. Because models are abstractions of reality that assist 
our understanding and furthermore, because the environment includes 
the physical (natural and built), biotic, social, cultural, economic, and legal 
aspects of our world, there are potentially as many environmental models as 
there are things under the sun. What is more, all of these models together 
would encompass the whole of human knowledge. I leave that particular 
goal to the Wikipedia. In this chapter, we will start by looking at the con-
text in which environmental models today are built and used. We will then 
look at some broad classes of environmental models as regards the way in 
which these models are structured and work. This chapter, thus, completes 
the framework for an understanding of the issues presented in Section III of 
this book.

Classifying environmental models into useful chunks for understanding 
how they are structured and work can be done in several ways, but which-
ever way you choose starts to get complicated as one recognizes exceptions, 
hybrids, and special cases. One common approach has been to recognize 
whether the underlying scientific logic of a model is inductive or deductive 
(Skidmore, 2002; Brooks, 2003). Inductive models are empirically based 
in which models represent generalized theories derived from observed 
data. The possible weakness of this approach was discussed in Chapter 
4. Nevertheless, in cases where our knowledge of the exact processes at 
work or the mechanics of their behavior are not sufficiently well known 
in detail, inductive black- or grey-box models will often be adequate for 
our purposes. A statistical treatment of empirical observations and testing 
allows one to determine the probability or reasonableness of the results of a 
model (e.g., confidence limits of a regression line model). Deductive models 
on the other hand are based on physical laws, such as the conservation of 
matter and energy, which are either built up from axioms or on the basis of 
falsifiable hypotheses. Here, empirical data are used to test models rather 
than build them. Many environmental models that simulate physical or 
chemical processes are deductive. The problem with classifying models 
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strictly in this way is that, in practice, many approaches to environmental 
modeling often require both inductive and deductive elements. At its sim-
plest, GIS data handling in either preparing data for simulation models or 
creating models of the environment within GIS tends to be inductive in its 
approach. Remote sensing (RS) is commonly used to classify objects induc-
tively. The numerical simulation model that uses such data may appear 
to be deductive in the way it handles the transport and fate of materials 
within a system, but may well employ empirically derived curves (trans-
fer functions) embedded within them to make the models more tractable. 
Instead then, we will use a fourfold classification (wholly inductive) loosely 
based around how the models are derived and used: conceptual, empirical, 
knowledge-based, and process models. But before launching into these, let 
me set them in the general context of where, when, and for what purposes 
such models are used.

Context of Environmental Modeling

Some of the contextual issues were touched upon in Chapter 1. Here they 
need to be expanded upon and added to. Critical concerns over the manage-
ment and custodianship of our planet and its resources began in the late 
1950s and became established as a popular movement in the 1960s. This 
began to influence legislators, regulators, and policy makers from the 1969 
enactment of the U.S. National Environmental Policy Act (NEPA) through 
the 1992 Rio Declaration on Environment and Development (Agenda 21) and 
up to the present. Even the industrial giants, the so-called “polluters,” have 
had to promote green images to maintain their customer bases. However, 
in a modern, pluralist society, environmental issues have had to take their 
place alongside all the other competing objectives (Welford, 1995). Thus, 
from a European perspective, there is certainly a desire amongst the popu-
lation to maintain high standards of living with inexpensive, good quality 
food and consumer products, affordable energy and transport on demand, 
and modern schools and hospitals with the latest technologies. And lest we 
forget, cheap holiday flights to our choice destinations. Twenty-first-century 
lifestyle for the individual seems to have become an inner balancing act 
between a genuine desire for greenness and sustainability on the one hand 
and having the necessary accoutrements of gratified hedonism on the other. 
For those nations still on the path toward these lifestyles, to be told by assist-
ing nations and trading partners in the West of fears for the environment 
and damage caused by development, not surprisingly appears hypocritical. 
In the end, the environment of the twenty-first century will be the environ-
ment we make (Botkin, 1990). Consider Figure 5.1. It essentially says that 
any land use is the result of an interaction between the physical and biotic 
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aspects of the environment and the intermeshed socio-cultural, economic 
sphere. Thus, the so-called “natural” landscapes remain more or less intact 
either because they present no opportunities for alternative use as yet, or 
precisely because their natural state affords some benefit (say, recreation). It 
is, of course, not just land use, but the quality of the air, water, fishing stocks, 
and so on. Either way, we humans dominate the agenda despite being prob-
ably outnumbered by the mass of organisms in just my back garden.

That the physical and biotic environments are critical to our well-being 
is well recognized. Since the 1960s, technological developments have facil-
itated inventories of the environment and measurement of impact and 
change with increasing ease and frequency and at higher resolutions. Key 
among these technologies is imaging using RS. From the earliest meteoro-
logical satellites, through the NOAA, Landsat, and Spot series to the latest 
IKONOS and EROS satellites, there are now in place a diversity of sensor 
types, bandwidths, swathe widths, and resolutions that can record a truly 
staggering range of environmental phenomena (for more details on sensors, 
see van der Meer et al., 2002). Such data have not only fuelled models, but 
also concerns. It was, for example, RS imagery (Nimbus 7) that first allowed 
scientists to identify the significance of and then study (model) the rate of 
ozone depletion in the upper atmosphere over Antarctica. The use of, say, an 
aerosol hairspray containing chlorofluorocarbons (CFCs) may have seemed 
an innocent action for an individual, but the aggregate cumulative result 
of many individuals over time has resulted in a “hole” in a critical layer of 
the atmosphere. This is but one example of how adverse impacts can arise 
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from the cumulative actions of individuals and illustrates why regulation 
and planning are required so as to moderate individual actions and to pro-
vide strategically for the needs of society. Planning has been defined as “a 
process of preparing a set of decisions for action in the future directed at 
achieving goals by optimal means” (Dror, 1963). Within this apparent linear 
process toward some future point are, in fact, a series of functions that form 
a loop to become a recursive process. Thus, Dueker (1980) considered that the 
ideal planning process would: define the problem, determine objectives for 
solving the problem, evaluate alternative means of meeting those objectives, 
select the best alternative, implement the best solution, and then monitor 
the results. Planning in an environmental context is also an inherently spa-
tial activity and, therefore, it is not surprising that planners were among the 
early adopters of GIS. Furthermore, it is well recognized that where human 
activities become enmeshed with the physical and biotic environments, 
there lie problems, hazards, resources, and opportunities (Cooke, 1992), all of 
which need informed evaluation. These “environments of concern” (Jones, 
1983) have become issues central to planning and feature prominently on 
government and global agendas. The role of environmental modeling should 
already be apparent to the reader, but so that we can see the full spectrum, it 
is necessary to briefly run through three specific issues related to planning 
and management at the man–environment interface: environmental impact 
assessment, sustainable development, and issues of hazard, vulnerability, 
and risk.

environmental impact assessment

In order to balance the increasing dilemma of maximizing our well-being 
while minimizing environmental abuses, a methodology of environmental 
impact assessment (EIA) was developed to assess the environmental impli-
cations (physical, biotic, socio-economic) that might result from the imple-
mentation of policies, plans, and development projects. The results of an EIA 
are embodied in an environmental impact statement (EIS). There is a consid-
erable volume of literature on this subject, but in the context of this book, 
the reader is referred to Selman (1992), Welford (1995), and Therival et al. 
(2005) in the first instance for a fuller treatment. Environmental impact 
assessment was first mandated in the United States under the NEPA of 1969. 
This was gradually followed by other industrial nations and was adopted 
by the European Union (EU) in 1985 through Directive 85/337, which was 
then, for example, incorporated into British law through The Environmental 
Assessment Regulations 1988. EIAs, however, are not necessarily applied to 
all developments, but tend to be employed selectively depending on the type 
of development, its scale, and setting. Such selectivity is not left to whim, but 
tends to be stipulated in some detail by the relevant legislation (see http://
ec.europa.eu/environment.eia for EU schedules of various classes of project 
in Directive EU 97/11). EIAs are generally structured as follows:
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 1. Project brief: In order to begin an EIA, there must be sufficient infor-
mation about the nature, purpose, scale, and proposed location 
for the development project made available to the assessors. This 
description of the project, associated technical details, costing, and 
infrastructure implications (e.g., road upgrading, water supply) 
would also include any initial evaluations of environmental aspects 
carried out during the search for a suitable location for the project.

 2. Identification of impacts to be assessed: Not all impacts need necessarily 
be assessed. Some may be trivial or of little significance to the out-
come of the EIA. In practice, a limited set of issues is to form the focal 
point of an assessment. This process of identifying which issues are 
likely to be important is called scoping. An element of consultation 
with the authorities, interest groups, and local population may be 
used to draw up the list. Scoping may seem to be a straightforward 
judgment, but it begs the question as to what the priority values 
of society are or ought to be (Beanlands, 1988). Not only do values 
change over time, but in many projects there are tensions between 
the common good and local impacts (waste must be recycled or 
disposed of somewhere; meat at the dinner table necessarily needs 
abattoirs) and between local benefits and impacts (e.g., employment 
versus loss of woodland). And, of course, NIMBY (not in my back-
yard!) is often rife.

 3. Establishment of baseline conditions: In the context of the scoping, it is 
necessary to establish the existing condition for two broad reasons. 
The first is to lay a foundation upon which the prediction of impacts 
can take place. If impacts are to be predicted, then those that derive 
from complex interactions must be modeled in some way and the 
models should take initial parameter values from and ought to be 
calibrated first to reflect existing conditions. The second reason is to 
have a marker against which later, postimplementation monitoring 
and audit can establish the degree of actual impact and the adher-
ence to mitigation measures. There is likely to be a considerable 
amount of baseline data and much of it spatial. It is not surprising 
then that GIS have a major role in the organization, integration, and 
storage of the baseline data.

 4. Prediction and assessment of impacts: There are two broad methodolo-
gies for completing this stage: matrix and checklist. The Leopold 
association matrix (Leopold et al., 1971) has 88 environmental char-
acteristics (e.g., soils, surface water) on the vertical axis set against 
100 actions that might cause an impact (e.g., irrigation, alteration 
of ground cover) on the horizontal axis. This gives 8,800 cells to be 
considered. For each proposed action in a project, a slash is placed 
diagonally across each cell opposite any environmental charac-
teristic that might be impacted. In the upper left-hand corner, the 
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magnitude of the impact is rated –10 to +10 (no zero), while in the 
lower right-hand corner, the importance of the possible impact is 
rated 1 to 10. The completed matrix is then a summary of all impacts 
upon which decisions can be made. Needless to say, simplified as 
well as variant matrices have been devised. Checklists offer a less 
laborious approach in which a fairly generic list of possible effects 
of a project (e.g., on human beings, on flora and fauna, on water) 
is used to drive an assessment of impacts. In either methodology 
a range of value judgments, GIS-based analytical techniques, use 
of systems diagrams (Odum, 1971), and simulation models may be 
employed to predict impact magnitudes and assess their impor-
tance. Although EIAs contain considerable scientific content, gaps 
in available theory (Selman, 1992) and a host of other uncertainties 
(de Jongh, 1988) mean that assessments cannot be made purely on 
formulaic grounds. Value judgments, therefore, are a necessary ele-
ment of this stage.

 5. Evaluation of mitigation measures and monitoring: EIA decisions are 
rarely made before attempts have been made to mitigate against pre-
dicted impacts. It may be possible to avoid or reduce certain impacts 
by introducing certain measures. Such measures could include:

Changes to where the project is to be built (e.g., identifying a bet-•	
ter location for a dam to be built).
Changes to the overall design (e.g., buried instead of surface •	
pipeline) or specific details (e.g., nozzle size used on a coastal 
effluent outfall).
Stipulations on construction methods (e.g., use of mufflers and •	
no night working to reduce noise impacts).
Stipulations on how the constructed facility should be operated •	
over its lifetime (e.g., minimum downstream flow from a dam to 
maintain river ecology).

  It is also at this stage that the necessary postimplementation monitor-
ing program, in order to measure actual impacts, would be designed. 
Monitoring may even be started at this stage in order to augment the 
baseline data for the key impacts.

 6. Consultation and review: Prior to any final decision, consultations on 
the findings are usually carried with all parties (the public and the 
government) and since certain aspects of the assessment are neces-
sarily judgmental, there are often differing interpretations on magni-
tude and importance of impacts and scope for review of the findings. 
Following this stage, a decision can usually be reached on the go-
ahead (or otherwise) for a project, though not always unanimously.

 7. Implementation, monitoring and audit: Because most environments 
are dynamic, it is often necessary to conduct monitoring of an 
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implementation against a reference site of similar situation, but 
unaffected by the project. Thus, the monitoring of impacts will 
tend to take the form of testing for any statistically significant dif-
ferences from the original baseline data and reference sites. Audits 
are carried out after a sufficient period of monitoring to establish 
the general accuracy of the predictions made during earlier stages. 
This provides valuable feedback for use in other EIAs and estab-
lishes whether or not impacts for the specific project are within an 
acceptable range and whether or not further mitigation measures 
are required.

Again, the role of environmental modeling (physical, biotic, and socioeco-
nomic) in EIA is obvious. Models as descriptive devices, embodying theories 
and hypotheses of the workings of processes, are used in the scoping exer-
cise to identify likely key impacts and in the baseline stage informing the 
relevant layers of data that need to be collated. A wide range of simulation 
models are used to predict likely magnitude of impacts including air, water, 
and noise pollution, biotic models to predict ecosystem impacts, graphic 
models to assess visual impact, and, by no means least, economic models. 
But, despite the ample opportunity for employing models, EIA remains both 
science and art because much judgment is required. Nevertheless, insights 
provided by models are of key importance.

an integrated approach

There are considerable benefits to be gained by integrating planning, EIA, 
and preliminary design into a single, comprehensive process. This brings 
together multidisciplinary teams to evolve projects from conception to 
ensure compatible benefits for society, minimized impacts, and feasibility of 
construction. A case in point is the construction of new power stations and 
overhead power transmission lines in Hong Kong in the late 1980s and early 
1990s (e.g., Power Technology, undated; Urbis Travers Morgan Ltd., 1992). 
With rapid economic growth and transformation of lifestyles since the early 
1970s, Hong Kong’s demand for electricity was growing significantly, partic-
ularly in the New Territories where eight designated new towns were under 
construction to house and provide employment for over a 3 million popula-
tion by 1997 (Bristow, 1989) as well as growth in demand from industry and 
rural village renewal and expansion. The new transmission lines required 
to be constructed were 400 kV double-circuit with tower dimensions of up 
to 70 m high, 25 m diagonal leg span and able to withstand typhoons (hur-
ricanes) in exposed mountainous terrain. The type of terrain is illustrated in 
Figure 5.2 and a transmission tower prior to stringing shown in Figure 5.3.

High land prices in low-lying, gentler terrain and a strong NIMBY effect 
due to the adverse impacts of transmission lines on the development potential 
of private land, meant that routing would inevitably have to be in the steeper, 
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Figure 5.2
Stereoscopic view of typical mountainous terrain in Hong Kong across which overhead trans-
mission lines were to be constructed. (Photos courtesy of the author.)

Figure 5.3
Aerial oblique view of a double-circuit transmission tower, prior to stringing, constructed to 
withstand typhoons. (Photo courtesy of the author.)
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mountainous terrain. However, most of the mountainous terrain in Hong 
Kong is of scenic beauty and is designated as Country Park. Such terrain is 
also prone to landslides and imposes engineering design challenges for the 
routing and construction of power lines. Clearly, a route of minimum envi-
ronmental impact might not be capable of construction, at least not within 
a price that the community is willing to pay for its electricity. The solution 
was to carry out the environmental impact assessment and the preliminary 
design in one single study that worked toward minimizing environmental 
impact, minimizing the geotechnical constraints (slope instability, need for 
special foundations), respecting the design parameters of towers and cables, 
and without unnecessarily inflating the overall construction cost. During the 
process, where conflicts arose between the various facets, the effects were 
modeled and compromises were thrashed out through consultation. In the 
end, though, a solution was reached that all parties agreed to sign up to.

Sustainable Development

Are environmental impact assessments a panacea or a waste of time? They 
have certainly been hailed as both (Greenberg et al., 1978). A major flaw that 
has emerged is their project-by-project implementation. This was certainly 
my experience of the overhead transmission lines in Hong Kong even with 
the integrated process. As successive new power stations were built, even 
though they may be in different locations, the electricity still needed to be 
delivered to the same centers of population causing a sort of power line 
congestion. The first overhead transmission line to be built occupied the 
best route, with each new power line after that occupying a progressively 
suboptimal route with increasing scenic and technical constraints as the 
mounting number of power lines became increasingly obtrusive and must 
more or less run in parallel as crossovers are difficult to achieve. At no stage, 
in my opinion, did a study for any one overhead transmission line consider 
where any future capacity might go and whether the results of the current 
study might jeopardize such future developments. At the 1992 Rio Earth 
Summit, Brazil, the Rio Declaration on Environment and Development, 
Agenda 21 was adopted by 178 governments. Agenda 21 was all about sus-
tainable development and the declaration set out 27 principles of how that 
might be achieved (United Nations, 1992). Key among these for a definition 
of sustainable development is:

Principle 1: Human beings are at the center of concerns for sustainable 
development. They are entitled to a healthy and productive life in 
harmony with nature.

Principle 3: The right to development must be fulfilled so as to equita-
bly meet developmental and environmental needs of present and 
future generations.
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The declaration incorporates both the temporal and the spatial and pro-
vides for a reconciliation of environment and economy (Welford, 1995) with 
ethics and politics emerging as central issues in applying the principles 
(Owens, 1994). Implicit is the wider use of models to simulate the medium- 
and long-term effects of development, and to be more integrative of these 
models in studying the interdependence of a range of phenomena. Such 
information systems are likely to be large and complex incorporating data, 
models, and expert knowledge (Figure 5.4). Indeed, this augurs well for GIS 
and environmental simulation modeling. But while the concept of sustain-
ability has ushered in a paradigm change toward notions of planning and 
development, there has been little guidance on how to incorporate sustain-
ability into the practicalities of the planning process at a local level par-
ticularly in how to define and measure the interests of future generations. 
The reality that has emerged is the recognition that sustainability is itself a 
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dynamic concept (van den Brink, 1999). The knowledge, values, and norms 
that we apply today are likely to change over time. What we consider sus-
tainable today, may not be considered so in the future. Given this shifting 
sand, sustainability is not a goal in itself, but a principle or litmus against 
which developments can be tested.

Hazard, Vulnerability, and risk

Principle 1 of the Rio Declaration (above) seems to espouse a romantic view 
of man able to live in harmony with nature, a notion that sits nonconform-
ably with the International Decade of Natural Disaster Reduction (IDNDR) that 
spanned the 1990s (Brimicombe, 1999a). The IDNDR was initiated by the 
United Nations in the face of the escalating human vulnerability to natural 
disasters in terms of the heavy loss of life in developing countries, huge eco-
nomic losses in developed countries, and the growing possibility of mega-
disasters due to population concentration (Hamilton, 2000). While insurance 
losses resulting from manmade catastrophes remained at a near constant 
level for the period 1970 to 1992, losses resulting from natural hazards 
increased nearly 10-fold (Swiss Reinsurance Company, 1993). The number of 
disasters per decade has increased fourfold since 1950 (Munich Reinsurance 
Company, 2001). Losses are predicted to continue increasing exponentially. 
Then there are the “creeping” disasters of climate change from which we can 
expect increasing intensity of rainstorms (including hurricanes/typhoons), 
droughts, and windstorms all of which threaten infrastructure and ecosys-
tems with long-term cost implications (Saphores, 2004). Most natural hazards 
(earthquake, volcanic eruption, hurricane/typhoon, tsunami, landslides, 
avalanche, flooding, wildfire, pests) are characterized by nonrandom spatial 
distributions and can be expected to reoccur in the same locations along 
gradients of magnitude and frequency (high frequency of low magnitude 
events, low frequency of high magnitude events). Thus, inappropriate devel-
opment in areas of known or suspected hazard consequent on the pressures 
of population growth may not immediately have catastrophic consequences, 
but can leave future generations vulnerable. Furthermore, the cumulative 
effects of incremental land use change can trigger adverse geomorphologic 
responses, such as increasing flood severity in urbanizing drainage basins 
(Morisawa and LaFlure, 1979), or, as has been increasingly experienced in 
England over the past few years, increasing flood severity due to changing 
weather patterns making themselves felt on urbanizing floodplains. With 
growing population numbers concentrated into ever larger cities worldwide, 
the propensity for disasters continues to grow. It is not just lives that are at 
risk from catastrophic events, but the economy and essential services.

Given our knowledge of physical processes, it should be within our power 
to model and manage. But this is over-simplistic. Let us take the case of Hong 
Kong: a small and wealthy region of just 1050 km2, 60% mountainous terrain, 
and, hence, a severe shortage of easily developed land and a population of 
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about 6 million. Average annual rainfall is 2,225 mm, but tropical depressions 
and typhoons can result in rainfall intensities that can reach 90 mm/hr. Four 
days of severe rainfall in May 1982, for example, resulted in more than 1,500 
landslides (Brand et al., 1984). Since 1950, there have been more than 470 
deaths from the failure of manmade slopes formed during construction of 
building platforms (http://hkss.cedd.gov.hk/hkss/). Yet, some two decades 
of cataloging, monitoring, and reconstructing these slopes, passing of new 
legislation and enforcing strict design criteria and construction codes, some 
deaths and injuries (though fewer in number) still occur, the most recent 
fatality (at press time) being in 2008 (http://hkss.cedd.gov.hk/hkss/eng/
safemeasure/lpi/LPI_Chart_2008_Eng.pdf). Our knowledge of slope failure 
processes is good, but not perfect; slope failure models are good approxima-
tions, but cannot take account of all defects in a slope, particularly as we 
can only sample the physical characteristics of the soil and rock beneath the 
surface; we cannot predict when the next rainstorm that triggers a landslide 
will occur other than in rough probabilistic terms and, therefore, we cannot 
predict exactly where or when the next slope failure will occur nor who will 
get in the way. What we can do is identify the level of hazard, assess the 
degree of vulnerability, and determine the level of risk. But these terms—
hazard, vulnerability, risk—which are in themselves models, need defining. 
In doing so, I have drawn upon Varnes (1984), United Nations Disaster Relief 
Organization (1991), Cutter (1996), Fernandez and Salas (1999), Kong (2002). 
and Raetzo et al. (2002) where the reader can find a fuller treatment:

Hazard: A hazard can be taken as any potentially damaging phenom-
enon for which there is a probability that it will occur within a given 
time period and in a given area. This can be applied to naturally 
occurring phenomena (natural hazards, such as those listed above) as 
well as to the economy (e.g., stock market crash), industrial processes 
(e.g., pollution), and even antisocial behavior (e.g., violence in a mar-
riage). Explicit in the definition is the spatio-temporality of hazards 
and that within certain scales of space and time they can be mod-
eled both as spatial and historical analogues (e.g., hazard maps) or 
modeled probabilistically by return period (see below). Recognition 
of a hazard, therefore, is dependent on data of prior occurrences 
and the ability to identify what and where they are and when they 
have occurred. In other words, a potentially damaging phenomenon 
about which we have no data and have not previously experienced 
cannot properly be called a hazard—it remains a conjecture.

Return period: Associated with any hazard is a probability of occur-
rence. This is usually expressed as the expected average time in 
years for an event of a particular magnitude to reoccur. For example, 
a severe flood may be said to be a “1 in 100 year” event or has a “100-
year return period.” This does not mean that a flood of this severity 
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will have exactly 100 years between each event, rather the probabil-
ity that a flood at least this severe will occur in any one year is 1%. 
From an engineering perspective, hydraulic structures, for example, 
will be constructed to cope with a “design flood,” that is a specified 
return period of flood, which, if exceeded, may result in failure and, 
therefore, represents the likelihood of structural failure. The occur-
rence of natural hazards tends to follow highly correlated patterns 
of magnitude and frequency as illustrated in Figure 5.5(a). The pat-
tern is one in which low magnitude events will have a higher fre-
quency (shorter return period) while high magnitude (severe) events 
will have a lower frequency (longer return period). Calculating the 
expected return period for hazards is an important part of assess-
ing the degree of vulnerability and risk a hazard may pose. Such 
probability calculations can be carried out from existing records of 
the magnitude and frequency of events over a long period or they 
may be simulated using Bernoulli trials (if events are considered 
to be independent) or Markov trials (if events are considered to be 
dependent) from shorter event records and plotted as log probability 
graphs to produce straight line relationships (Figure 5.5(b)).

Vulnerability: No less than 18 definitions of vulnerability are quoted 
by Cutter (1996). At its simplest, vulnerability is the degree of loss 
that may result from the exposure to a hazard. That loss may be 
rated from slight damage (low vulnerability tending to 0) to total 
loss (high vulnerability tending to 1). In human terms, should the 
loss of any life be the likely outcome of a specific hazard in a specific 
place, then it is usual to classify these individuals as being highly 
vulnerable. There is an obvious link between the estimation of the 
degree of vulnerability and the magnitude of event for which it is 
being estimated.

Risk: This can be considered in several parts. The first is specific risk 
expressed as the product of the probability of the hazard and the 
vulnerability, that is, the expected degree of loss arising from a haz-
ard of particular magnitude. The element risk is the size of popula-
tion, value of property and economic activity subject to the specific 
risk. The total risk is then the product of the specific risk and the 
element risk, that is, the expected number of lives lost and people 
injured, the damage to property, and the disruption to the economy 
arising from the event, either expressed monetarily or in descriptive 
terms. Eveleigh et al. (2006) provides an example of coupling systems 
engineering and spatial modeling in ArcGIS for natural hazard risk 
assessment in relation to the infrastructural elements for disaster 
response and recovery. Morita (2008) provides an example of flood 
risk analysis to determine optimum levels of flood protection in rela-
tion to design storms for different return periods.
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Figure 5.5
Frequency and magnitude: (a) the general relationship between magnitude and frequency of 
natural hazards, (b) an example of plotting return periods for event magnitudes. (Based on 
Table 4.2 in Thornes, J.B., and Brunsden, D. (1977) Geomorphology and time. Methuen, London.)
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Decision Environment

Having identified pertinent hazards (or potential impacts arising from devel-
opment) and assessed the degree of vulnerability and risks that these pose, 
in part through modeling, a decision on what to do about the situation needs 
to be made. Chapter 10 will look at some issues in depth concerning the deci-
sion-making process, but it is pertinent to introduce here some general aspects 
about the framework within which the GIS analyst and environmental mod-
eler will participate in assisting the formulation of decisions. Decision making 
is often an iterative process. A problem may be recognized and objectives for 
its resolution set. Based on policy criteria, explicit or implicit in the objectives 
and any physical, economic, or social constraints that might exist, alternative 
strategies are developed and evaluated often with the use of models both to 
simulate the problem to fully understand it and to simulate the alternative 
strategies to study the effectiveness and consequences of any mitigation mea-
sures that might be adopted. As a result of this process, the understanding of 
the nature of the problem itself may be clarified or even change, the objectives 
may be modified; some residual problems may be outstanding from the main 
solution, any of which requires the cycle to be iterated. Even when a plan has 
been implemented, its performance will need to be monitored and evaluated 
and may raise issues about the initial problem that are not being effectively 
solved or new problems that have arisen, thus requiring yet further iterations. 
Developing alternative strategies, evaluating them and recommending one or 
more courses of action is far from straightforward and can itself be a politi-
cally hazardous journey. Returning to our theme of natural hazards, whether 
landslides or floods, there are a range of alternatives, even complementary 
strategies that could be put forward to reduce the level of risk depending on 
the degree of prevention or preparedness that society would be willing to 
accept (tolerate) and pay for. Figure 5.6 broadly summarizes these options.

The first thing to note is that mitigation in terms of prevention or pre-
paredness is a spectrum from maximum risk reduction usually at a high 
financial cost (construction and maintenance) to a much smaller level of 
risk reduction usually at a much-reduced financial cost. Second, these are 
not mutually exclusive. Given the magnitude and frequency relationship of 
natural hazards, it may be prohibitively expensive or technically impossible, 
for example, to prevent loss from higher magnitude events, in which case 
some form of preparedness through zoning or early warning (such as for 
hurricanes) would be prudent. Lower magnitude events that happen more 
frequently on the other hand, such as a one-in-five-year flood, may indeed be 
preventable at an economic cost and allow land to be kept in productive use. 
Such decisions may well change from one area to another depending on the 
local level of risk. Decisions on where and when to employ structural or non-
structural measures of mitigation and the mix that may represent a really 
good, affordable strategy are aided considerably by the use of simulation 
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models particularly where they are structured into decision support systems 
that facilitate “what if”-type queries and the analysis of multiple scenarios. 
This will be a theme we return to in Chapter 10; an example of decision 
support for basin management planning is given in Chapter 6. The point to 
note is that environmental simulation modeling has an important, almost 
defining role to play in such decisions alongside or actively in tandem with 
the use of GIS. Even evacuation strategies need to be evaluated and can be 
modeled using geographical micro-simulation (e.g., Chen, 2008).

Only a minority of problems can be solved by resorting only to simula-
tion modeling. The environmental modeler and GIS analyst, while working 
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Broad approaches to risk reduction measures for natural hazards. (Adapted from the United 
Nations Disaster Relief Organization (1991) Mitigating natural disasters—phenomena, effects and 
options. UN Publication E.90.III.M.1, New York.)
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as scientists and professionals, need to interact with policy makers and the 
public and may need to resort to different approaches in getting their recom-
mended solutions across to them (Rejeski, 1993; Berry, 1995). Perceptions of 
risk and the necessity for response can be quite different among these groups 
(Figure 5.7). The scientist and professional modeler first navigate a physical 
space to identify risks and then a decision space to identify solutions. The 
policy maker who has to manage risks is also navigating a decision space 
for what might be effective solutions, but also a social/perceptual space in 
judging politically acceptable solutions. The public navigates a perceptual 
space in terms of recognizing where they are at risk and whether or not they 
should worry about it. Communication between these different groups may 
require changing stances and certainly a recognition of the way in which 
facts and values interplay and may indeed come into conflict.

Environmental models, if employed perceptively, can be used to solve prob-
lems, verify outcomes, persuade policy makers, and even inspire changes in 
culture and public attitudes. There is everything to be gained. All this rests, 
of course, on the appropriate choice and deployment of models. We will now 
look at the details of four broad classes of environmental models: concep-
tual, empirical, incorporating artificial intelligence, and process.

Conceptual Models

Conceptual models contain a high level of abstraction. In Chapter 4, we 
looked at a couple of conceptual models as statements or simple formulae. 
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Figure 5.7
Reasoning about risks and solutions. (Adapted from Rejeski, D. (1993) Environmental modeling 
with GIS, ed. Goodchild et al. Oxford University Press, New York, pp. 318–331; and Berry, J.K. 
(1995) Spatial reasoning for effective GIS. GIS World Books, Fort Collins, CO.)
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Frequently, conceptual models are also mappings of the main elements of 
a system together with how these elements are linked (Figures 5.8 and 5.9). 
These links may indicate the direction and strength of the interaction and the 
presence of any feedback loops. As we saw in Chapter 4, conceptual models 
are an early stage of progressing toward more fully specified working models 
and are used to describe the structure and dynamics of the system being stud-
ied. They are important in giving shape to our thinking and understanding of 
how particular aspects of the environment work. Therefore, it is worthwhile 
at this point to introduce some basic elements of systems thinking (Emery, 1969; 
Harvey, 1973; Deaton and Winebrake, 2000). A system can be taken simply as 
any part of the environment under primary consideration. A closed system is 
one that works with no interaction with its external environment. However, 
there are very few real world environments that could be usefully considered 
in this way. Dynamic systems usually have transfers of energy and matter 
into and out of the system and, thus, are modeled as open systems. An open 
system, as conceptualized, will have a boundary across which transfers can 
take place (Figure 5.8(a)). This boundary can be placed to restrict the number 
of processes under consideration and/or to limit spatio-temporal extent. Such 
boundaries are not necessarily real discontinuities (though it helps if they 
are), but can be artificially imposed to make the modeling tractable. Thus, 
in hydrology, it is common to define the system as a natural catchment area 
with the boundary defined by its drainage divide. For landslide models, the 
boundary may be an arbitrarily defined 3D section of slope. Boundaries can 
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Figure 5.8
Systems thinking: (a) main elements of an open system, (b) the specification of subsystems 
within a system’s hierarchy.
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be placed specifically in order to study the transfers across them. Within the 
boundary can be described, if necessary, as a series of subsystems each with 
their internal boundaries and transfers between them (Figure 5.8(b)).

The phase space of a system is a multidimensional space of all states that a 
system could theoretically adopt depending on a range of states in the exter-
nal environments, quantities, and rates of inputs, outputs, and so on. Clearly 
some of these states may be highly unlikely indeed, but if theoretically pos-
sible then they contribute toward the make up of the phase space. The actual 
state of a system at any particular moment (i.e., its position within the phase 
space with respect to an interval of time) is determined by its state variables, 
that is, the variables that characterize the properties of a particular system. 
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Figure 5.9
A conceptual systems model of a landslide. (Adapted from Brunsden, D. (1973) Geologia 
Applicata e Idrogeologia 7: 185–207.)
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Thus, in the landslide model of Chapter 4 (and as a systems model in Figure 
5.9), the state variables were the shear strength and shear stress of the soil; the 
state of a slope could then be signaled by its factor of safety (FoS) calculated 
from these two state variables, its phase space being all possible FoS that the 
slope could adopt. State variables can be further characterized as being exter-
nal (exogenous) or internal (endogenous) to the system. External variables are 
considered to be independent and broadly control the system, such as climate 
controlling the rate of weathering that reduces a soil’s shear strength. But, 
there is a further complication here in as much as the designation of vari-
ables as being dependent, independent, or even of no relevance at all, depends 
upon the time frame (Schumm and Lichty, 1965). Thus, in the long term, time 
itself can be considered as an independent variable in the evolution of land-
scapes and species, but in the study of short-term system states it becomes 
irrelevant. Again, the steepness of a slope in the long term is a dependent 
variable (depending on the geology, climate, and the time taken to weather 
and erode the slope to a flatter gradient), whereas in the short term, it would 
be an independent variable contributing to sheer stress. Finally, state transition 
is the process of changing from one state to another within the phase space 
over a time interval in response to changes in the state variables.

Conceptual models of the type being discussed here rarely allow direct 
simulation, but are nevertheless frequently resorted to because of the sheer 
complexity of most nontrivial environmental systems. On the one hand, our 
knowledge of both the internal system behavior and the external transfers of 
matter and energy together with the interrelationships of components may 
not be sufficient for an adequate simulation. Yet, on the other hand, it is fre-
quently not possible to carry out direct experiments on, say, an ecosystem so 
as to observe and understand the effect of changes to system inputs on its 
behavior (Malkina-Pykh, 2000). In these situations, the broad understanding 
of a system that a conceptual model conveys can allow us to directly infer 
“ball park” responses of a system to change or management intervention 
and debate the likely level of risk.

Empirical Models

Empirical models are derived from observation and data, and from which 
conclusions are drawn on the effects or outcomes of processes. Thus empiri-
cal models rely heavily on induction for their construction. The models 
themselves are more often than not black- or grey-box models in as much as 
the details of the internal processes may not be known other than conceptu-
ally. What tends to be known are the inputs and the resultant outputs. Where 
these inputs and outputs have been adequately quantified, they can be sub-
jected to a statistical analysis and used as either deterministic or stochastic 



The Role and Nature of Environmental Models 111

models. Otherwise, historical and/or spatial analogs can be developed. Let us 
deal with the analogs first. Empirical analogs that are inductively developed 
conform well with the way cartographic processing of map-based models is 
carried out using GIS. In Chapter 2, we looked at a landscape in which there 
were a number of landslides (see Figure 2.5). From the conceptual knowl-
edge we have gained about the process of landslides in Chapter 4 and in the 
previous section on conceptual models, we could start to list the common 
variables that one might need to consider in a map-based inductive analysis. 
The list is quite long, as presented in Table 5.1, though not all of them might 
be relevant in every study (e.g., distance to possible earthquake epicenter 
in areas where there are only sporadic occurrences of minor tremors). An 
effective approach to evaluating landslide hazard and risk is terrain analysis 
using aerial photographic interpretation (API) supplemented by secondary 
data in the form of published topographic and geological maps and backed 
up by field inspection (Brimicombe, 1982; van Zuidam, 1985; Soeters and van 
Westen, 1996). Only recently has satellite RS imagery started to have suf-
ficient resolution for this type of work. The terrain analysis would result in 
knowing the spatial distribution of:

A range of slope instability events, usually classified by type (e.g., rota-•	
tional slip, debris flow, rock fall) and apparent age (e.g., recent, ancient).

The environmental setting of these features (e.g., geology, soils, •	
hydro-geology, land cover).

An assessment of the condition and likely triggering mechanisms of these 
features (e.g., rainfall events, stream undercutting). On the basis of such data, 
key variables indicative of stable or unstable slopes can be identified. For 
example, this could take the form of any slope composed of colluvium (a 
relatively unstable soil type) of angle greater than 15° (relatively steep for 
colluvium) within 250 m of a stream (footslope position where saturation can 
occur during rainstorms, or is being actively undercut at the base). This then 
becomes the spatial analog that can be applied in two ways: (1) to extrapo-
late zones of likely instability beyond only those locations where historical 

Table 5.1

Variables Commonly Used in a Map-Based 
Inductive Analysis of Landslides

Slope angle Geology
Slope aspect Discontinuities
Slope height Soil type

Soil thickness
Rainfall regime Distance to active faults
Undercutting
Loading Land cover
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landslides are visible, and (2) to rapidly apply the model in other areas that 
have a similar environment without the need to carry out a full terrain anal-
ysis. The approach is classically GIS-able and is a prime example of environ-
mental modeling within GIS:

A data layer for elevation is transformed into one for slope angle.•	
A data layer of soils is invoked and colluvium selected.•	
A data layer giving a 250 m buffer around streams is produced.•	
If vector data sets, all three layers are topologically overlaid.•	
Polygons (or cells) of unstable colluvial footslopes are identified •	
and mapped through Boolean selection according to the relevant 
criteria.

The results of this type of empirical analog, for our example landscape, 
are given in Figure 5.10. By plotting the final result of Figure 5.10(a) in rela-
tion to villages and roads as in Figure 5.10(b), we have a means by which to 
start evaluating risks. The village in the northwest is clearly vulnerable as 
are parts of the larger village in the southeast. Some sections of road are also 
vulnerable, but these would carry a lower risk, say, to life. Further details of 
this approach for landslides can be found in Wang and Unwin (1992) and 
Berry (1995).

Statistical analysis of empirical data often results in the construction of 
regression line models, which can also be expressed as equations. These are 
numerous in environmental modeling and one such example has already 
been given in Figure 5.5(b) above. They are not difficult to construct and 
are standard functions of spreadsheets and statistical packages. For our 
example landscape, we can extract data, using GIS functionality, on gradi-
ent and landslide density, which can then be sampled and plotted as a scat-
ter diagram for all densities above zero and a regression line fitted using a 
spreadsheet or statistical package (Figure 5.11). The regression line equation 
in Figure 5.11(c) of y = 0.21x – 0.73 could then be used deterministically to 
calculate likely landslide density (and, hence, the degree of likely hazard) 
for other similar areas using only a digital elevation model (DEM). The R2 

value of 0.67 represents the goodness-of-fit of the regression line to the data 
and, hence, its reliability as a tool for inferring y. In this case, the fit is reason-
able for a single variable and shows the dominant effect in this instance of 
slope angle, though other variables, such as geology, would be expected to 
have an important influence too. Therefore, regression models can be created 
for single variables as in our example or for multiple variables. Moreover, 
regression models need not be linear, but can be curved in some way (in 
Figure 5.11(d), the second-order polynomial gives a better fit to the data). In 
environmental modeling, frequently used nonlinear models are exponen-
tial, logistic, oscillatory (e.g., sine curve), and higher order polynomials (first-
order polynomials being linear).
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(a)

(b)

Figure 5.10
Application of an empirical analog using GIS to identify unstable colluvial footslopes: (a) 
GIS-based approach to evaluating steeper slopes, colluvial soils, and threshold distance from 
streams (see text for full explanation); (b) results plotted in relation to villages and roads.
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Empirical models of the type we have been discussing can be rather nar-
rowly defined in their application depending on the nature of the phenom-
enon and the location(s) in which data are collected. The overall form of the 
equation and the variables it contains may not change, but the gradient and 
the intercept of the regression line equation may vary from one study to the 
next depending on the data collected. Gerrard (1981), for example, in citing a 
simple equation for soil transport by surface wash as being in proportion to 
slope length and slope gradient in the form:

 
S xa b∝ tan β  (5.1)

where S = soil transport (cm3/cm/yr), x = slope length (meters), β = slope gra-
dient (degrees), found that the exponents a and b as calculated by a number of 
authors, could range between 0.7 and 2 with most values, nevertheless, fall-
ing between 1.35 and 1.5. Furthermore, since Equation (5.1) is a proportional-
ity ( ∝ ), in order for it to be solved in any particular area, a constant needs 
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Figure 5.11
An illustration of an empirically derived regression model relating (a) landslide density to (b) 
gradient in the example landscape; (c) is a linear model, (d) is a polynomial model.
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to be determined that would reflect the ease of soil detachment according 
to soil type, rainfall characteristics, and so on, for that particular location or 
geographical unit. This simple example illustrates how modelers, in apply-
ing such an empirical model, would need to make decisions about appropri-
ate values for exponents and establish an appropriate value for the constant. 
Such values may come from locally collected data, the scientific literature, or 
from published tables.

Empirically derived equations, if fully specified, can be solved cell by cell 
for a geographical area using the map algebra capability of GIS (Chapter 2). 
A data layer needs to be compiled or derived for each element of the equation 
in raster format. Suppose we take a much simplified wildfire hazard model 
in the following form and solve it for our example landscape:

 Bi = β0 + β1 COVERi + β2 SLOPEi + β3 ELEVi (5.2)

where Bi = the propensity of the ith geographical unit to burn, COVERi = a 
scaling of land cover classes, SLOPEi = a scaling of gradient, ELEVi = a scal-
ing of elevation as a surrogate for exposure to wind, β0 through β3 are coef-
ficients. Assuming an intercept of β0 = 0 and values of β1 = 0.6, β2 = 0.3, and β3 
= 0.1, and that COVER, SLOPE, and ELEV are scaled from 0 (no contribution) 
to 10 (maximum contribution) as in Table 5.2, the results of applying this 
model are given in Figure 5.12. Note in Figure 5.12(e) how the wildfire has 
kept to the higher ground in lower vegetation, thus reflecting Figure 5.12(d).  
Another way to express empirical data is in the form of an index. An index 
can in itself be a predictive model similar to multiple regression, it may be 
a means of reducing the number of data dimensions or a method of rank-
ing, say, for prioritization. Malkina-Pykh (2000) considers that more environ-
mental indices need to be developed to analyze environmental change and 
evaluate both interactions and cumulative impacts on multiple resources. 
Such indices can be calculated for systems without clear or exact geographi-
cal identity, or for specific geographical units. Probably the most widely used 
index of the latter type is the normalized vegetation difference index (NVDI) 

Table 5.2

Example of Numerical Scaling of Variables for 
a Map Algebra-Based Wildfire Model

Land Cover Slope Angle Elevation

Agriculture 2 0–5 2  50–150 2
Bare 0  5–10 4 150–250 4
Grassland 10 10–15 6 250–350 6
Shrub 8 15–20 8 350–450 8
Village 0 20+ 10 450+ 10
Woodland 4



116 GIS, Environmental Modeling and Engineering, Second Edition

0
Re-scaling

2
4
6
8
10

(a) (b)

Low

High

Wildfire
Hazard

(c) (d)

(e)

Figure 5.12
Application of a simplified wildfire model using map algebra techniques in GIS (see Chapter 
7, Figure 7.8 for a flowchart of the model application): (a) rescaling of land cover, (b) rescaling 
of gradient, (c) rescaling of elevation, (d) result of solving equation (5.2) using map algebra, (e) 
burn scar from wildfire. (Photo courtesy of the author.)
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used to assess relative amounts of photosynthetic activity for standing green 
biomass (or crop yield) from multispectral satellite imagery:

 
NVDI NIR RED

NIR REDi
i i

i i
= −

+
 (5.3)

where NIR = reflectance in the near infrared channel and RED = reflectance 
in the red channel for the ith image pixel.

Models Incorporating Artificial Intelligence

The rise of artificial intelligence (AI) in the latter half of the twentieth century 
has been an “attempt to mimic the cognitive and symbolic skills of humans 
using digital computers in the context of a particular application” (Openshaw 
and Openshaw, 1997, p. 16). This covers an enormous area from robotics to 
fuzzy logic and computational linguistics, not all of which are relevant to 
environmental modeling. We will look at knowledge-based systems (KBS), heu-
ristics, artificial neural networks (ANN), and agent-based modeling (ABM) here 
while fuzzy methods are best dealt with in Chapter 8. Overviews of AI are 
to be found in Wiig (1990) and Openshaw and Openshaw (1997), while the 
general benefits and risks of AI are reviewed by the Council for Science and 
Society (1989).

Knowledge-based Systems

The terms knowledge-based and expert seem to be used interchangeably in 
much of the literature. There are, of course, subtle differences between using 
knowledge and the inference of expert judgments, but in the context of add-
ing more “intelligence” to environmental models, we will, for the moment, 
refer generally to KBS. Within KBS there is the compilation of a knowledge 
base containing facts and rules about a specific problem or related set of 
problems. KBS can either give specific answers to situations or provide 
guidelines on what to try next either in a modeling context or in a manage-
ment context. This may help professionals to grapple with complex issues or 
to guide less-experienced personnel as to appropriate forms of analysis and 
decisions. Let us briefly look at two examples. In Figure 5.10, we looked at 
the identification of unstable slopes. The empirical analog could be restated 
in the form:

 GIVEN (antecedent evidence) THEN (consequent hypothesis)

which for the unstable slope problem would look like:
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 GIVEN (soil = colluvium AND slope ≥ 15° AND stream   
 proximity ≤ 250 m) THEN unstable

where the consequent hypothesis may be qualified by a probability statement 
depending on the strength of the evidence. In other words, suppose a slope 
was more than 250 m from a stream and, therefore, only two out of the three 
conditions for instability were met, then KBS might still conclude that a steep 
colluvial slope was unstable, but with less than 100% certainty. A complete 
series of such inductive rules may be developed to cover all combinations of 
situations. In Figure 5.12, we looked at a simplified wildfire model. Having 
identified areas of relative hazard, how to prioritize areas for protection 
and what management plan scenarios would be best for them? To answer 
these types of questions, Gronlund et al. (1994), for example, report on the 
development of a knowledge base and its use in the Crowders Mountain 
State Park, North Carolina, USA. Subsequent to the type of mapping car-
ried in Figure 5.12, prioritization would reflect knowledge of the risk of fire 
to nearby infrastructure and amenities, endangered species and residential 
areas. The expert knowledge would also subsequently generate manage-
ment plan scenarios to the level of detail necessary for allocating personnel 
and equipment. Another application of KBS to guide the choice and use of 
environmental models in modeling the changing effect of pH level in lakes 
on fish damage is given in Chapter 7.

Heuristics

Heuristics are not dissimilar to KBS rules, but have rather a different func-
tion in modeling. At their simplest, they can be regarded as rules of thumb 
on how to approach the solution to some problem. Sometimes in modeling 
there could be an extremely large number of possible solutions or scenarios 
that might need to be examined in order to find the best one. For example, 
in Chapter 4, we looked at the problem of topographic modeling and the use 
of inverse distance weighting (IDW) as one method of solving the problem. 
Whereas a KBS could be set up to advise a modeler as to which method 
of interpolation (IDW, triangular irregular network (TIN), kriging, etc.; see 
Chapter 8 and Chapter 9) would be the most appropriate in a particular set of 
circumstances (type of topography, sample size and type, honoring breaks), 
there is still the problem of what would be the optimal setting for param-
eters. In the IDW example, the power weighting (distance decay) function r 
in Equation (4.7) could take on an infinite number of values, all of which may 
conceivably need to be tested to arrive at Figure 4.13. In reality, heuristics can 
help us to find a solution faster. First, as a rule of thumb, it is conventional to 
start with r = 2 before trying others. Then, if a search for an optimum appears 
necessary, we would usually restrict the breadth of the search in the range 1 
to 6 (Figure 4.7) and then we would usually be satisfied with an approxima-
tion of the optimum by an integer (rather than to one or two decimal places). 
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That cuts down the search for an acceptable value of r to a maximum of six 
trials instead of the theoretical infinite. The example given here is a rela-
tively simple one when compared with models that use many parameters 
where the number of permutations and combinations can quickly escalate. 
Heuristics, when incorporated into computational algorithms, are thus effec-
tive as search procedures to find optimum solutions in large combinatorial 
problems. An introduction to Monte Carlo, simulated annealing and tabu 
search procedures can be found in Openshaw and Openshaw (1997). It is 
appropriate to mention here another heuristic approach, that of parallelism 
or parallel computing, which is designed not so much to find an algorithmic 
“rational shortcut” to a solution, but to speed up processing time through the 
use of multiple processors. Models that can be segmented into n independent 
activities that can then be executed concurrently (in parallel) on n processors 
can speed up the computation of the model by (theoretically) n times. Pirozzi 
and Zicarelli (2000) report using 512 processors to achieve a reduction in 
computation time from 30 days to less than one hour in modeling coastal 
thermal pollution from a hot water discharge. Such increases in speed for 
model execution will permit more comprehensive simulations to be carried 
out at finer temporal and spatial resolutions than previously possible.

artificial Neural Networks

Artificial neural networks (ANN) are used to develop empirical models, but 
are dealt with here because the techniques used come under the definition 
of AI quoted above. ANN attempt to mimic the brain’s capacity to learn 
by using a model of its low-level structure (Patterson, 1996). The brain is 
composed of about 109 neurons that are massively interconnected, averag-
ing about 3 × 103 interconnections per neuron. These interconnections are 
not direct so that a signal from one neuron must cross a synapse (chemi-
cal-filled gap) before reaching another. Transmission of a signal across the 
synapse depends upon the strength of the signal and the efficacy of the syn-
apse in relaying the signal. The receiving neuron only fires the signal onto 
another if it has exceeded a threshold level. Thus, in a learning process, the 
synaptic connection between certain neurons is considered to “strengthen” 
and more easily transmit the signal that is then passed on by other neurons. 
Put simply, a stronger connection is made in the brain. This learning pro-
cess is mimicked by ANN. Consider the network shown in Figure 5.13. This 
shows an input neuron layer for m variables, an output neuron layer for n 
possible results (where m > n), and one or more intermediate “hidden” lay-
ers of j neurons (where j > = n). ANN are allowed to “train” on data sets of 
known results during which, through a process of constant stimulation, the 
weights w associated with the connections into each neuron are adjusted 
and, in turn, influence the transformation by a sigmoid function into the 
output data for each neuron. Training continues until inputs arrive at the 
correct results (or threshold accuracy of minimized overall error). ANN can 
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then be used to study the relationship between the input variables and the 
resulting phenomena and/or to process other data sets for which a result is 
required.

Taking again the theme of unstable slopes in our example landscape, 
a sample data set can be generated detailing geology, land cover, gradi-
ent, and distance from stream for slopes that can be categorized as either 
stable or unstable. A 1% sample is taken of the area. Part of this data set 
is held back for evaluating (verifying) the ANN model after each round 
of training, the rest are used to train the ANN. The results are given in 
Figure 5.14, which shows how the level of error in correctly predicting sta-
ble and unstable slopes falls with increased training. Eventually, there is 
no further gain in the training and we are left with about 10% error either 
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Figure 5.13
Structure of an artificial neural network (see text for details).
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Figure 5.14
Results of ANN used to determine stable and unstable slopes in the example landscape (see 
text for details).
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through misclassification or because there has been no classification as a 
result of detected ambiguity. Nefeslioglu et al. (2008) provide a compara-
tive study using logistic regression and ANN for landslide susceptibility 
mapping in Turkey.

There are a number of different types of ANN to choose from. Perhaps 
the most popular is the multilayer perceptron, as illustrated in Figure 5.14, 
and can be simply interpreted as an input–output model. Others include 
radial basis function, probabilistic, generalized regression, linear, and 
Kohonen networks, the latter being particularly useful in exploratory analy-
sis (StatSoft, 1998). ANN can be used not only on geographical attribute data, 
as in the above example, but also on time series data. This has led to a grow-
ing interest in the use of ANN in hydrology (Tokar and Johnson, 1999; ASCE 
Task Committee on Application of Artificial Neural Networks in Hydrology, 
2000a; 2000b) for both rainfall runoff and water quality modeling. Drumm 
et al. (1999) report on the use of ANN in modeling the habitat preferences 
of the sea cucumber (Holothuria leucospilota) in the shallow-water ecosystem 
of the Cook Islands. Here ANN were considered to offer an advantage over 
traditional regression modeling because of the nonlinear nature of the eco-
logical variables. ANN identified that higher species abundance was most 
associated with seafloor habitats characterized by rubble and consolidated 
rubble. Maeda et al. (2009) use ANN in conjunction with multitemporal RS 
imagery (NVDI values) to model areas of high risk of forest fire in the Mato 
Grosso, Brazil.

Despite the growing number of successes, there is a concern that ANN 
are being used as black boxes with “explanation” of physical and biological 
processes tied up in the hidden layers. Thus, ANN should not be viewed 
as a panacea substitute for a detailed knowledge of the relevant processes. 
Nevertheless, the number of models incorporating such elements of AI will 
undoubtedly increase as researchers and professionals seek to endow their 
models with greater levels of “intelligence.”

agent-based Models

Agent-based modeling can be defined as “a computational method that 
enables a researcher to create, analyze, and experiment with models com-
posed of agents that interact within an environment” (Gilbert, 2008). As for 
the term agent applied to software, there is as yet no universally accepted 
definition, and is taken here to be an autonomous, problem-solving, encapsu-
lated entity in a dynamic and open environment (Woolridge, 1997; Jennings, 
2000). Thus, a key characteristic of agents is their ability to direct their activ-
ity or change their state in response to changes in their surrounding environ-
ment or other agents with which they come into contact. Their behavior can 
be endowed with a certain level of intelligence. Where agent-based models 
have been used for spatial simulation, agents have tended to be deployed 
as spatial objects to computationally characterize the behavior of individual 
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entities (ants, plants, people, vehicles) in order to study the patterns that 
emerge over time as a consequence of their microlevel behaviors and state 
changes (Batty and Torrens, 2005; Ferber, 2005). In other words, agent-based 
modeling is predominantly about studying emergent macro patterns of 
behavior. Such models can employ hundreds, thousands, or even millions 
of agents and are often referred to as multiagent systems. Recent reviews of 
agent-based models in GIScience are provided by Sengupta and Seiber (2007) 
and O’Sullivan (2008).

This concept of emergent macro behavior arising through micro simula-
tion can be readily illustrated using a three-population Schelling model of 
segregation (Schelling, 1971) implemented using cellular automata (CA) soft-
ware SpaCelle (http://www.spatial-modelling.info). CA are close in concept 
to ABM (Rodrigues and Raper, 1999) in that each cell can act autonomously 
making decisions on changing its state depending on the states of neighbor-
ing cells, thus resulting in patterns of emergent behavior. Under the rules of 
the simulation, the three populations are distributed randomly with a cer-
tain number of “empty” cells remaining. A cell at any one time can only have 
one state: one of the three population groups or empty. Based on a tolerance 
threshold, each populated cell will assess its neighbors and if they are suf-
ficiently different to itself (other than empty), then it will change its state to 
empty (equivalent of moving out of the neighborhood). On the other hand, 
depending on a slightly different neighborhood tolerance level, an empty 
cell can change its state to one of the population groups (equivalent of mov-
ing into the neighborhood). Thus, with each time step, each cell makes its 
own micro decision based on simple rules on any change of state. Figure 5.15 
shows the progress across 5,000 time steps of a run that starts with a ran-
dom distribution. After 10 time steps, there is not much change, but by 100 
time steps, a clustering of the three populations starts to emerge. At 500 time 
steps, very definite territories for each population emerges, but beyond that 
(given the parameter values in this realization) one population group starts 
to dominate so that by 5,000 time steps, it has occupied some 80% of the area. 
These then are the emergent patterns arising out of the micro behavior of 
each individual cell.

CA have been used to build a macroscopic collision model to simulate debris 
flow-type landslides calibrated against an actual debris flow in Campania, 
Southern Italy (D’Ambrosio et al., 2007). In another study (Almeida et al., 
2008), ANN are employed in the parameterization of variables that control 
the state changes in a CA model that is then used to simulate land use change 
in a town near São Paulo, Brazil, so as to reveal emergent patterns of land use 
dynamics. Chen (2008) uses agent-based modeling to compare the effective-
ness of simultaneous and staged evacuation strategies for hurricanes affect-
ing Galveston Island, Texas. Agents in this case represented vehicles along 
evacuation routes. Through the agent-based simulation, it was found that 
a staged evacuation across the bridge to the mainland helped reduce total 
evacuation time.
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Figure 5.15
A three population Schelling model of segregation implemented using cellular automata: (a) 
random start point at time zero, (b) after 10 time steps, (c) 100, (d) 200, (e) 500, (f) 1,000, (g) 2,000, 
(h) 5,000. (Note: White cells are empty.)
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Process Models

The construction of these models assumes that sufficient is known about the 
relevant physical, chemical, and biological processes to be able to state the 
governing equations and solve them. Such models tend to be deductive (but, 
see caveats on this distinction at the beginning of this chapter) and based 
largely on the laws of conservation of mass, energy, and momentum. The 
multiplicity of process models that exist have come about for three main rea-
sons. Firstly, in order to reduce many environmental processes to a series of 
equations, simplifying assumptions are required and since process modeling 
is as much an art as a science, these assumptions are variously elaborated, 
evolved, dropped, new ones introduced, and so on. Secondly, the enormous 
diversity of real environments that one might wish to model results in many 
different formulations often with empirical and, increasingly, AI elements. 
Thirdly, that different models may be constructed depending on time scales, 
spatial resolution, the speed with which an answer is needed, and the con-
fidence required in that answer to justify a decision. Nazaroff and Alvarez-
Cohen (2001) view process models as having four key elements or groups of 
processes that should be considered:

Sources: These are inputs that either occur directly within the system 
(e.g., a source of pollution) or are transported into the system across 
its boundaries (e.g., input of rainfall to a drainage basin).

Transformations: These are the physical, chemical, and biological processes 
by which specified changes take place to the substances and organ-
isms within the system (e.g., weathering of rock to soil on a slope).

Transport: These are all the mechanisms by which substances and organ-
isms move or are moved from one location to another within the system 
(e.g., routing of rainfall through a drainage basin toward the outlet).

Removal: These are the physical, chemical, and biological processes 
that control the fate of substances in terms of their eventual removal 
from the system (e.g., evapo-transpiration of moisture out of a drain-
age basin).

To this we need to add the specification of parameters that determine the 
initial state of the system and the computational time step that determines the 
length of each time segment in which processes operate to change the state 
of the system. A diagrammatic visualization of these components is given 
in Figure 5.16. Using such a component structure to formulate an analysis 
requires the following steps (Nazaroff and Alvarez-Cohen, 2001):

Identify the processes in each of the key elements above and trans-•	
late each into a mathematical representation.
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Identify the known parameters and variables and quantify them.•	
Identify the unknowns and assign symbols to represent them.•	
Write the mathematical relationships that link the known and the •	
unknown based on physical, chemical, and biological principles.
Obtain a result by solving the mathematical equations.•	
Interpret the significance of any results for the system being modeled.•	

It all sounds quite straightforward, but in reality, process models are invari-
ably complex and, as a result of nonlinear relationships between inputs and 
outputs, which together with errors or imprecision in the data, may mean 
there is no unique solution, only approximations (Beven, 2001). Most process 
models, therefore, are heavily computational and need to be run by comput-
ers. The complexity and computational intensiveness of process models also 
tend to increase with resolution and dimensionality. It is common to classify 
process models by the number of spatial dimensions explicit within them—a 
temporal dimension (the time step) always being present in environmental 
models. Thus 1D models, also known as lumped parameter models, consider 
space to be uniform with all inputs and outputs to be uniformly distributed. 
These models are essentially nonspatial in as much as computation is carried 
out at discrete points. Two-dimensional and three-dimensional models, oth-
erwise known as distributed parameter models, allow processes to be modeled 
across surface areas and with added depth. Thus, a 2D reservoir model will 
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The broad components of a process model.
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ignore variations in water quality with depth and concentrate on modeling 
horizontal movements of an averaged column of water through the reservoir 
while a 3D reservoir would consider both horizontal and vertical movements 
of, say, heavy metals through a reservoir. As can be expected, with each suc-
cessive increase in dimension, there are more parameters and variables to be 
specified and thus model complexity increases.

lumped Parameter Models

Perhaps the simplest equation that encapsulates a lumped input–output 
model is the “rational method” of calculating flood, so-called because it 
reflects the rational way peak discharge is expected to increase with catch-
ment area and rainfall intensity:

 
Q CAR=  (5.4)

where Q = peak discharge, C = a constant, A = catchment area, R  = average 
rainfall intensity.
The average rainfall intensity is the input while the catchment area and con-
stant transform that input into a peak discharge (the output). The calculation 
is for the point of discharge and any variability of rainfall within the catch-
ment area is ignored. Clearly, parameters such as the constant need to be 
established and can be solved empirically. Thus, one solution for floods in 
Britain is (Rodda, 1969):

 
Q A Rm a= 0 009 0 85 2 2. . .

 (5.5)

where Qm = mean annual flood, A = catchment area, Ra  = mean annual rain-
fall for the catchment area.

The sophistication of hydrological modeling has of course moved on con-
siderably since the 1960s, but lumped parameter models continue to have their 
place, albeit, in more advanced formulations. A large proportion of ecological 
simulations also tend to assume homogeneous landscapes in modeling popu-
lation dynamics. In such models, the focus is on population numbers in time 
rather than where the population, their predators, and resources actually reside 
within the landscape. These are typical of lumped parameter models and we 
will run through an example in some detail using the STELLA modeling soft-
ware (http://www.iseesystems.com/software/Education/StellaSoftware.aspx).

The giant panda (Ailuropoda melanoleuca) is a large, reclusive, bear-like 
mammal that may in fact be a distant relative of the raccoon. It is one of the 
rarest large mammals with only about 1,000 living in the wild in mountain-
ous bamboo forests in Sichuan Province, China. It is one of China’s national 
treasures. The panda is a carnivore, but the wildlife in its habitat is scarce 
and difficult to catch for a slow 160 kg mammal. Instead it has settled into a 
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sedentary, solitary life eating 10 to 15 kg a day of young and tender bamboo 
(predominantly Sinarundinaria sp.). The digestive system of the panda is not 
well adapted to digesting bamboo and, therefore, extracts little nourishment 
from it. This may well explain its relatively small range (about 8 to 10 sq km) 
for a large mammal and its general disinterest in mating. Pandas at birth 
weigh a mere 1/900th of the adult and remain with the mother for about 18 
months before becoming independent. Because the female panda will only 
rear one cub at a time (regardless of two or more in a litter), the shortest birth 
cycle is about once every three years, but even then many cubs do not sur-
vive. The bamboo the panda feeds on may seem equally peculiar. Bamboo 
normally grows from a thick underground rhizome from which new shoots 
are produced. But once every 50 to 100 years or so, the bamboo will flower, 
produce seeds and then die en masse. Fortunately not all species will do this 
with the same periodicity and, hence, not simultaneously. This flowering 
occurred in two species of bamboo in Sichuan Province in 1970 and 1983. The 
latter event was particularly devastating to the panda, which, despite gov-
ernment organized rescue efforts, resulted in the death of an estimated 15 to 
20% of the panda population. So, we will use this understanding of panda 
population dynamics (albeit, incomplete) and this type of bamboo flowering 
scenario to illustrate an approach to lumped parameter modeling.

The panda subsystem can be reduced to a few simple elements 
(Figure 5.17(a)). Central to the subsystem is the reservoir or stock of pandas 
(Sp), irrespective of where they are spatially. Inputs to this stock are panda 
births (Bp) and outputs from this stock are panda deaths (Dp). Thus, the size 
of stock of pandas after any particular time period t can be expressed as:

 Sp(t + ∆t) = Sp(t) + {Bp - Dp}∆t  (5.6)

where Sp(t) size of panda stock at time t, ∆t the time increment, Bp,Dp = num-
ber of panda births and deaths, respectively. Thus, the stock after the pas-
sage of time t is the original stock at time t plus the net growth (or decrease) 
consequent on the number of births and deaths during that passage of time. 
Note that for simplicity we are ignoring in- and out-migration. Equation (5.6) 
is the difference equation for the stock Sp(t). The actual number of births in ∆t 
will depend on the size of panda stock and its birth rate. The dependency 
between these two elements of the subsystem to determine births is shown 
in Figure 5.17(a) by the arrow connectors. The birth rate b subsumes all the 
biological and psychological processes of the panda involved in mating and 
is expressed as the average number of births per individual in the stock. 
Thus, the number of births can be expressed as:

 Bp(∆t) = PbSp(t)∆t  (5.7)

where Pb = panda birth rate. And, similarly for the number of deaths. If 
perchance the birth rate Pb equals the death rate Pd, then the stock remains 
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constant over time and the subsystem is said to be in a steady state. This is 
defined mathematically as when the instantaneous rate or derivative of Sp(t) 
with respect to t is zero:

 

dS t
dt
p( )

= 0  (5.8)

If the derivative is greater than zero, then the stock will increase and if 
less than zero, then the stock will decrease over time. Having defined the 
elements of the system and their dynamics, it is now necessary to determine 
the relevant parameters. We can set the initial stock at 1,000 since that is the 
estimated number of pandas. Pandas live for about 30 years in the wild, so in 
probability terms, we can estimate the annual death rate to be 1/30. The birth 
rate is a lot more problematic. First, the only known rates are those for pandas 
in zoos or in reserves and then many of these are by artificial insemination. 
Second, we know that even if there are multiple births, the mother will only 
look after one. So, from the available data (e.g., at http://www.wwfchina.org/
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Figure 5.17
An illustration of (a) the panda subsystem and (b) a projection of panda stock over 125 annual 
time steps.
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english/pandacentral/) and counting only the one birth that will be reared, 
a very broad guess at the annual birth rate would be 1/60. Now, this is not 
very good news for the panda, as illustrated in Figure 5.17(b), which shows 
an exponentially declining population with only 122 remaining at the end 
of the simulation, hence the amount of effort which goes into the protection 
and conservation of pandas.

The other subsystem within our lumped parameter model is the bamboo 
that the panda feeds off. This is constructed in a very similar way with a 
stock of bamboo Sb and its rate of new growth and depletion. Now these 
two subsystems could exist independently, but clearly they don’t. The panda 
stock depends on the stock of bamboo as a source of food and the bamboo 
stock gets depleted by the panda eating it. These connections are shown in 
Figure 5.18(b) by the connector arrows joining bamboo stock and panda birth 
rate and joining the panda stock with the bamboo depletion. The first thing 
to note is that these connections are in the form of a feedback loop, that is, 
the subsystems interact with each other in a closed circle of cause and effect, 
one being:

 Sb(t) → Pb → Bp(Δt) → Sp(t) → Db(Δt) → Sb(t)

The second thing that must be noted is that since the panda birth rate has a 
dependence on the stock of food, the birth rate should no longer be viewed as 
a constant, but as a logistics curve. The S-shape of this curve determines that 
when the bamboo stock is low, the panda birth rate will be low; as the stock 
of bamboo increases, so does the panda birth rate; however, as the stock of 
pandas reaches the carrying capacity of the bamboo (the maximum number 
of pandas that can be fed on the bamboo stock), the birth rate grows increas-
ingly slowly toward the maximum birth rate. The same can be said for the 
rate of new growth in the bamboo in relation to the carrying capacity of the 
soil. Normally in such modeling it would be left to the bamboo stock to limit 
the panda stock through the panda birth rate. However, with the mass die-
off of bamboo, there are direct panda deaths through starvation rather than 
just limiting the birth rate. Hence, the connector in Figure 5.18(b) from the 
bamboo stock Sb to the panda deaths Db in order to regulate the panda stock 
more rapidly as a consequence of bamboo die-off. Figure 15.18(a) shows 125 
years of logistic growth of the bamboo submodel (without grazing by the 
panda) with a flowering and 90% die-off every 50 years. This pattern shows 
initial unrestrained growth, which tails off as the carrying capacity of the 
soil is reached followed by the dramatic die-off; the cycle then gets repeated. 
In a joint simulation of panda–bamboo interaction, the initial stock of bam-
boo has been set higher than in Figure 15.18(a) and the logistics birth rate of 
the panda has been increased (out of interest) so that once the bamboo has 
reached 85% of its carrying capacity, it is assumed that there are sufficient 
tender, easily digestible bamboo shoots to afford the pandas a birth rate that 
matches its death rate (models allow us the possibility of experiments such 
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Figure 5.18
The simulation of panda–bamboo interaction: (a) die-off cycles in the bamboo subsystem, (b) 
linked panda and bamboo submodels, (c) simulation results.
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as this). Figure 15.18(c) shows the resulting simulation. Note that the Y axis 
has two scales, one for bamboo and the other for count of pandas. The bam-
boo follows the predicted cycle of growth and die-off. The pandas, with a 
maximum birth rate of 1/30, initially decline as the amount of bamboo is 
below the threshold for the maximum birth rate. At the first bamboo die-off, 
the panda numbers decline rapidly in response due to starvation and fall 
in birth rate. However, as the bamboo pass the 80% soil carrying capacity 
threshold, the panda numbers achieve equilibrium at a stock of 365. Notice 
how the bamboo stock is greater in this cycle than the previous—due to less 
pandas consuming it. At the second bamboo die-off, the pandas are again 
affected, but because their numbers are smaller they are not as seriously 
affected and reach a new equilibrium sooner.

It needs to be stressed that Figure 5.18 should not be taken as a definitive 
model of panda–bamboo dynamics without further refinement of param-
eters and calibration. Nevertheless, it illustrates in some detail the nature 
of lumped parameter simulation models. Lumped parameter models need 
not always be used nonspatially. A series of models can be used together, 
each simulating the conditions found in a specific geographical area. Thus, 
models similar to the ones above could be established for the different sub-
regions where the panda is found allowing parameters to be varied to reflect 
the specific conditions there as well as any migration between areas. Such 
an arrangement for hydraulic modeling for basin management planning is 
discussed in Chapter 6.

Distributed Parameter Models

These are the most numerically complex of environmental models that are 
framed computationally. With each distinct process resulting in its own 
model, it is only possible here to look at some broad principles. The first is 
discretization of space and time. Then we should consider routing over a top-
ographic surface and finally transport through a medium. A more detailed 
look at parameter estimation and calibration is left for Chapter 9.

Discretization

In the lumped parameter modeling above, we have already had to consider the 
discretization of the temporal dimension. For the population dynamics of the 
panda, we fixed the modeling time increment t as one year. This would seem 
intuitive, allows for reasonable estimation of parameters (annual birth rates 
and death rates), and on modern PCs takes a matter of seconds to calculate a 
century’s worth of data. We could have set the time increment at a decade, in 
which case we would probably be looking to simulate far longer time periods. 
While parameter estimation could have been more approximate, with only 10 
results per century, the model may not have been sensitive enough to reflect 
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say the details of a reduction in panda population in response to a bamboo 
die-off—its utility in this context would have been adversely affected. On 
the other hand, conceivably, we might have wanted to simulate with a time 
increment of one day. For this to be meaningful, our parameters would have 
to have had much greater precision (not just dividing annual rate by 365) and 
computationally may have become lengthy. Again, this may not be useful 
since panda dynamics are hardly observable on a daily basis. So, there is a 
compromise to be made and is nearly always a matter of judgment. In dis-
tributed parameter models, as well as time, there is space to be discretized. 
Again there are trade-offs to be made between the space–time domain of the 
specific process, parameter estimation, computation time, and utility of the 
results. Spatial discretization in a modeling context can either be sections of 
a network or a space-filling tessellation. Unless the modeling of a network is 
discretized at intersections or at regular distances or time intervals along the 
network, which is by no means always the case, then the discretization has to 
be effected manually. For continuous fields, it is normal to produce a tessel-
lation, examples of which were given in Chapter 2, Figure 2.11. Because the 
distributed parameter model is not just concerned with inputs, outputs, and 
changes of state to the whole system, but with inputs, outputs, and changes 
of state of individual, discretized spatial units, then in calculation terms the 
geometrically simpler tessellations of triangles and raster cells have a com-
putational advantage. In general, triangular and grid tessellations are used 
for different forms of calculation as discussed below. With heavy reliance on 
raster satellite imagery as a cost-effective means of data collection and with 
raster being one of the two principal data models in GIS, there is a tendency 
for distributed parameter models, which use GIS for data preparation, to use 
a grid cell tessellation. The size of the grid cell becomes critically important 
(Li, 2007). Although GIS software can quickly produce more or less any grid 
size, there are important trade-offs with the computation time of the simula-
tion (even with today’s fast PCs), which tends to grow exponentially as the 
size of grid cell is reduced. If the cell size falls below the spatial resolving 
power of the simulation model, then there is nothing to gain and the model 
may even become unstable. With the resolving power of the model as a lower 
bound, a general rule of thumb is for cell size (∆x, ∆y) to be no larger than half 
the wavelength of the z to be accounted for. Modeling consequences of cell 
size are explored further in Chapter 9.

Routing across a Digital Elevation Model

A number of applications, which use distributed parameter modeling, 
employ a DEM for routing the transport of materials across a landscape. 
Obvious examples are surface hydrology and gravity flows of landslide and 
avalanche debris. If, for example, we look at the dominant variables in com-
puting overland flow (Figure 5.19) where the continuity equation for each cell 
can be written as (Smith, 1993):
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where h(t + ∆t) = water depth at the end of the time increment, h(t) = water 
depth at the beginning of the time increment, net_rain = incremental rainfall 
minus incremental infiltration; it becomes evident that topographic form is 
important in routing inflow into any cell and routing outflow from any cell. 
Note that a cell may have more than one direction of inflow from higher 
cells, but has only one outflow to a lower cell. Physical routing is dependent 
on gradient and aspect, in other words, the direction of maximum gradient 
of any cell. It is not surprising then that most GIS have built-in functional-
ity for calculating these from a DEM for which there are a number of algo-
rithms. However, before this can be done, it is necessary to clean a DEM of 
depressions or pits. Pits arise in a DEM where there has either been an eleva-
tion underestimate or overestimate, often as a consequence of rasterizing 
source data, which result in spurious depressions across which flow cannot 
be routed (since it is all uphill to adjacent cells), as illustrated in Figure 5.20. 
These are eliminated either by breaching across damming cells to form an 
outlet or by filling the depression to produce a continuous gradient to an 
outlet (Martz and Garbrecht, 1998). Once achieved, flow direction and flow 
accumulation can be derived (Figure 5.21). A review of methods of determin-
ing flow direction from DEM is given in Tarboton (1997). The most popular 
method, designated D8, was introduced by O’Callaghan and Mark (1984) 
and is implemented in a number of GIS packages. Each raster cell will be 
surrounded by eight neighbors (except for edge cells of a coverage, of course), 
either adjacent or on the diagonal, and the steepest gradient to a neighbor 
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Figure 5.19
Variables used in computing overland flow in a distributed parameter model. (Adapted from 
Smith, M.B. (1993) Hydrological Processes 7: 45–61.) h1 = h(t), h2 = h(t + Dt) in Equation (5.9).
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will be calculated and assigned a number in a base 2 series depending on 
that direction (Figure 5.22). This base 2 series translates into a binary series 
that becomes very quick to use computationally.

Decimal 1 2 4 8 16 32 64 128
Base 2 20 21 22 23 24 25 26 27

Binary 1 10 100 1000 10000 100000 1000000 10000000

From this data, the area of flow accumulation to each cell can be calcu-
lated and from which the drainage network and catchment boundaries 
can be derived (Martinez-Casasnovas and Stuiver, 1998). An implementa-
tion of much of this functionality in ArcView for inputs into TOPMODEL is 
described by Huang and Jiang (2002).

Many preparatory data processes relating to topography that were manu-
ally tedious or needed to be carried out by specially written modules prior 
to input to simulation models are now carried out efficiently by GIS. It may 
well be that the data models and algorithms implemented by the dominant 
GIS software vendors are beginning to dominate or even become a de facto 
standard in the way distributed parameter simulation models are structured 
to use DEM and prepare DEM derivative data.

Transport through a Medium

For many distributed parameter process models, the shape of the topogra-
phy may be only one aspect of the routing problem. If, for example, we were 

Removed pit

Contours after pit removal

Figure 5.20
An example of a pit in a valley floor that has been removed from a DEM.
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to consider the transport of heavy metals through a reservoir, the passage 
of smoke from an incinerator over an urban area, or the movement of an oil 
slick from a stricken tanker toward a shoreline holiday resort, then topogra-
phy has some role in defining, respectively, the 3D shape of the reservoir, the 
flow of air over the city, and the morphology of the coastal zone. But central 
to the process model will be the need to mathematically predict the move-
ment of substances or energy through the specific medium. Let us return for 
a moment to Figure 5.19 and suppose that the cell is instead a discretized 
element in a column of seawater. The inflows and outflows would then be 
determined by gradients within the seawater. These gradients might be in 
the temperature and pressure as a function of depth, due to local changes 
in salinity, as a consequence of the gravitational pull of the moon and sun 

X

Flow Direction

64

32

16 8 4

2

1128

(a)

0–1200
Distance (m)

1200–2400
2400–3600
3600–4800
4800–6000
6000–7200
7200–8400
8400–9600
9600–10800

(b)

Figure 5.21
Routing over topography: (a) flow direction, (b) accumulated length of flow for the two stream 
outlets in our example landscape.
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Figure 5.22
Numbering of flow direction in a cell and delimiting catchment areas. (Adapted from Smith, 
M.B., and Brilly, M. (1992) Photogrammetric Engineering & Remote Sensing 58: 579–585.)
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resulting in tidal currents, directional friction of the wind producing surface 
currents, and so on. All of these gradients are subject to the physical laws of 
the conservation of matter and energy and are usually solved mathemati-
cally as partial differential equations because several variables are usually 
involved. Spatial discretization in 2D or 3D in the present context becomes 
part of the solution. Imagine looking at a smokestack belching out black 
fumes at a constant rate into a light westerly wind of constant velocity. At 
the exit of the smokestack, the fumes are dark and concentrated and clearly 
differentiated by eye from the surrounding clean air. However, at some 
distance from the smokestack, the fumes have diffused into a wider area, 
become less concentrated, and dissipated at the edges so it becomes difficult 
to differentiate between clean air and the fumes. If we were to cut two slices 
through the fumes perpendicular to the wind direction, one near the smoke-
stack and one farther away, we would expect to find the same total amount 
of fumes in each slice, one concentrated and the other more dispersed and 
of lower concentration. Thus, there is conservation of matter, in this case 
the fumes. Incidentally, there is also conservation of the wind energy. If we 
wanted to know the concentration of fumes at any point, we would need to 
have a way of connecting the concentrations at the exit of the smokestack 
with the point we are interested in, so that the physical process of disper-
sion through air can be modeled. For this to be mathematically tractable, we 
need intermediate points to act as “stepping stones” in the solution so that, 
on the one hand, we don’t have to solve the problem for an infinite number 
of possible points and, on the other hand, we can reduce what in reality are 
very complex shaped gradients to a series of linear equations between step-
ping stones that can then be solved by numerical methods. In other words, 
this can be viewed as a form of interpolation. Our starting point, then, is to 
express the general case of a physical process operating within a specific 
domain or study area Ω as:
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where x = location, t = time, u = unknown to be solved, u  being a specific 
value of u, b = a coefficient > 0, f = the distribution of coefficients specific to 
the physical process being modeled, Γ0 = the specified boundary condition, 
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Γ’0 = the natural boundary condition, η,q = the specified distribution on the 
boundary, v = the perpendicular to the tangent at x, t.

Because in an environmental simulation, we are dealing with finite space 
and time, the specification of the domain Ω requires boundary and initial 
conditions to be set. For most physical processes, Equation (5.10) will rep-
resent a complex nonlinear relationship between inputs and outputs that 
may have no unique solution. A mathematically tractable approximation, 
therefore, is required. There are two main approaches: finite element method 
(FEM) and finite difference method (FDM), which are two forms of numeri-
cal integration of differential equations (Harris and Stocker, 1998). In fact, 
another method of numerical integration of differential equations—Euler 
method—was used by STELLA in the solution to the 1D panda–bamboo 
model. FEM and FDM both require a tessellation discretization in 2D or 
3D and, in general, it can be taken that FEM uses a triangulation in 2D and 
hexahedron in 3D, while FDM uses a grid in 2D and a cube in 3D. In fact, 
FEM can accommodate almost any shape of discretized element, whereas 
FDM is restricted in its solution to grid and cube. In the description of these 
two methods that follows, we will restrict the modeling to 2D and we will be 
using hydrodynamic modeling (used, for example, in coastal oil-spill mod-
eling, see Chapter 6) for simulating tidal currents in order to illustrate the 
workings of the two methods. Of course, it would be impracticable in a book 
such as this to present a complete numerical solution for each method. In 
the words of Beven (2001), “The approximate numerical solution to nonlin-
ear differential equations is, in itself, a specialism in applied mathematics, 
and writing solution algorithms is something that is definitely best left to 
the specialist.”In FEM, the domain Ω definition of the function is divided 
into a finite number of smaller subdomains (or subzones) Ωe in which the 
required function can be approximated by a balance equation based on the 
principle of conservation of energy; thus, for the general case Equation (5.10), 
the equivalent solution becomes:
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Equation (5.14) should theoretically be equal to zero, but in reality because 
of the approximation of the domain function it is only possible to seek a 
solution that minimizes J(u). The equation is in two parts where the first part 
integrates over the domain function (the study area) and the second part rep-
resents the boundary condition. Note also that, for FEM, only Γ0 is required 
and not Γ0′ and is, therefore, simplified. Equation (5.14) can be rewritten as 
a series of linear equations that are computationally easier to solve using 
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matrix algebra. Let us now have a look at FEM from a practical perspective of 
hydrodynamic modeling. Most dispersion models of coastal water pollution 
(e.g., oil and chemical spills, sewage outfalls, dumping of sludge) are devel-
oped on simulations of currents within the water. Reliable pollution predic-
tions, thus, are based on accurate hydrodynamic modeling. Hydrodynamic 
models can be implemented using either FEM or FDM, which for coastal 
water and estuaries generally use depth integrated 2D shallow water equa-
tions. The governing differential equations for hydrodynamic tidal model-
ing are (Foreman and Walters, 1990):

 ∂ ∂ ηη t + ∇ + =[(H ) ] minu  (5.15)

 ∂ ∂ η ηU u u f u u ut + • ∇ + ⋅ + ∇ + + =( ) g k (H ) min  (5.16)

where t = time, η = sea level (x, y, t), u = horizontal velocity (x, y, t), H = water 
depth (x, y), f = Coriolis force, g = acceleration due to gravity, k = bottom fric-
tion coefficient, ∇ is a Nabla operator.

Equation (5.15) is the balance equation for the water mass and defines the 
change in sea level as a function of water flux. Equation (5.16) represents 
the momentum balance in terms of nonlinear velocity gradients, hydrostatic 
pressure gradient, Coriolis force, and bottom friction. Figure 5.23 shows a 
section of coastal waters that has been prepared for FEM hydrodynamic 
modeling. There are two important aspects to note. The first is that there 
are two types of boundary: the natural coastline and an open boundary that 
represent an arbitrary cut-off to the study area. Both are represented by a 
series of nodes in the triangular mesh. The coastline acts as a barrier across 
which there can be no movement, but the open boundary allows inputs to 
and outputs from the system. The second important aspect is that the posi-
tion of nodes and, hence, the triangulation is not haphazard or random, but 
follows a specific model that takes into account the bathymetry. The Courant 
criterion couples the size of triangular elements and the critical time step of 
the model computation in the following way (Molkethin, 1996):

 ∆ ∆x t> +( )u gH   (5.17)

which can also be expressed as:

 ∆ ∆t x< +( )u gH  (5.18)

where ∆x = the size of spatially discretized element, ∆t = the time increment, 
u, g, H are as in Equation (5.16).
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On the one hand, simulation of tidal current in shallow water takes less 
time than in deeper water and in order to have a fixed global time increment 
the size of the triangle vertices should be in direct proportion to the square 
root of the corresponding water depth. On the other hand, a too large a time 
increment may cause instability and the simulation can generate erroneous 
results, while a too small a time increment would take too long to compute. 
Hence, the gradual enlargement of the triangular mesh in Figure 5.23 away 
from the coastline as the water gets deeper. At the start of simulation, the 
initial state is normally set as a current field of zero velocity. The simulation 
proceeds with input of a tidal model (Figure 5.24) across the open boundary. 
The tidal data shown in Figure 5.24 has two constituents:

 1. M2: This is the tidal constituent caused by the gravitational pull of 
the moon with a periodicy of about 12 hours, hence, twice a day.

 2. S2: This is the constituent caused by the sun and has approximately 
the same periodicy. Because in this example M2 and S2 are in phase, 
they will have a combined effect to produce a spring tide.

The effect of the tide data as input to the system at the open boundary is to 
force progressive changes in the sea level consequent on currents and their 

Figure 5.23
Illustrated is a section of shallow coastal waters and shoreline (400 km2) with FEM triangular 
mesh in preparation for hydrodynamic modeling.
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velocities that are propagated through the elements of the triangular network 
by the FEM. To visualize the effect, imagine two people holding a stretched 
out sheet, one loosely holding still (the shoreline), the other moving the sheet 
up and down (tide data at the open boundary) causing the whole geometry 
of the sheet to rhythmically change. Over a 12-hour cycle, the tide will pro-
gressively rise from the open boundary causing flow toward the shore fol-
lowed by a fall at the open boundary causing the water to flow away from the 
shore. This is illustrated in two hourly steps in Figure 5.25 where the arrows 
represent a vector giving the direction of current and its velocity.

The FDM takes a different approach to the solution of partial differential 
equations. The approximation is made using difference quotients in the form:

 u
u u u u

i j
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where ui,j is a grid node in which i, j represent inner nodes on a grid. Iteration 
through the grid is required in order to achieve convergence towards an 
acceptable accuracy. Figure 5.26 shows the same area of coastline with a 
grid prepared for hydrodynamic modeling using FDM. We have already 
discussed the issue of the Courant criterion on the modeling process and 
which becomes a drawback of FDM with the regular grid. The shoreline is 
less well-represented compared with the FEM and there are more nodes to 
be used in the calculation. Of course, the size of the grid could be enlarged 
to reduce computation time, but this will result in decrease in resolution and 
accuracy of the subsequent fate modeling of, say, an oil spill. This issue will 
be illustrated in Chapter 9. Figure 5.27 shows the results of the simulation for 
the initial time step alongside the FEM results.
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Figure 5.24
Example of tidal data with M2 and S2 constituents used at the open boundary.
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(a)

(c)

(e)

(b)

(d)

(f )

(g)

Figure 5.25
Results of hydrodynamic modeling using FEM with arrows showing current direction and 
velocity at each node: two hourly time increments with (a) at the initial time step t = 0 hours 
through to (g) at t = 12 hours.
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The obvious feature is that FDM neither gives results for open bound-
ary nodes nor for inner coastline boundary nodes, which results from the 
method of calculation. This means that the shallow water environment 
where critical impacts often occur is not being adequately modeled. Some 
of the relative advantages of FEM versus FDM for simulation models have 
already become apparent in the above example: equalization of time step 
and results at the boundary. From a general perspective, the FDM solution to 
Equation (5.10) as expressed in Equation (5.19) may appear simpler and may 
indeed be quicker to calculate for small models of fairly simple physical pro-
cesses. For larger, complex models (both geometrically and in the number 
of coefficients to express the physical process), FEM has the advantage in 
both calculating time and accuracy of the simulation. FEM uses symmetri-
cal matrices in its solution of the linear equations, which help to minimize 
both computational time and memory requirements and, since convergence 
is assured, provides a robust solution. However, FEM treats simple and com-
plex problems in exactly the same way, which explains its lower efficiency 
than FDM for simpler models. But this has a distinct advantage from a soft-
ware implementation perspective. Each phase in the FEM solution is easily 
standardized in programming so that one single software implementation 
can cope with any geometric shape of the elements and any distribution of 
the coefficients relevant to the physical process. Data input can also be sim-
plified. This makes FEM a powerful tool in both environmental simulation 
and solving engineering problems.

Figure 5.26
Illustrated is the same section of shallow coastal waters and shoreline (400 km2) with FDM grid 
mesh in preparation for hydrodynamic modeling.
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(a)

(b)

Figure 5.27
Comparison of results of hydrodynamic modeling using (a) FDM and (b) FEM at the initial 
time step.
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6
Case Studies in GIS, Environmental 
Modeling, and Engineering

This chapter will focus on a few case studies. Again, it is not my intention to 
produce here one example each of the full diversity of geographical informa-
tion systems (GIS) and environmental modeling, but a selection that I have 
been involved in and for which identifying engineering solutions are very 
much the focus of the project. Other smaller case studies are used in the 
other chapters where specific issues need illustration, but the case studies 
presented here are intended to give some overall context to the previous 
chapters and to flag issues that are going to be dealt with in the chapters 
that follow. We will begin by looking at a taxonomy of modeling approaches 
to using GIS in environmental modeling and engineering. That model will 
provide a framework for looking at four case studies:

 1. Landslides that could be potentially damaging to a reservoir dam.
 2. Basin management planning using GIS and hydraulic modeling.
 3. Coastal oil-spill modeling.
 4. Forensic analysis of pipe failures.

An important characteristic of most real-world consultancy is confiden-
tiality. The results of such studies may have important commercial or legal 
implications; the client may not want the world to know there is (or was) a 
problem, not from any sinister motive, but that the public may, for example, 
become unduly alarmed. So, for some of the case studies, I cannot be too spe-
cific about where they are (they are drawn from around the world) and, for 
the last case study, I have repeated the principle of the approach on sample 
data taken from elsewhere. Having read these case studies in relation to the 
taxonomy of modeling approaches, the reader will be in a position to concep-
tually “pigeonhole” other case studies on GIS and environmental modeling 
that they will find in the literature or may themselves be working on.

Modeling Approaches in GIS and Environmental Modeling

Figure 6.1 provides a taxonomy of modeling approaches. The three broad 
approaches represent how the existence or source of any hazard is modeled 
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as risk in relation to vulnerable receptors. This implies that both the source 
and the receptors have to be identified and that there is some model of 
how that source impacts the receptors. A source may be identified as a 
specific object (a smoke-stack, effluent outfall), a zone (unstable slope from 
which specific landslides may occur, an area of seepage, a fault line), or dif-
fuse over the whole area (strong wind event, heavy rainstorm). Generally, 
the first of these would be classified as point sources and the latter two 
as nonpoint sources. Difficulties arise over such an inductive classification 
because a nonpoint source in one area may originate from a point source in 
another. Thus, general air pollution in one area may originate from specific 
factories elsewhere. Depending on the scale of study, it may not be possible 
to model all the individual point sources, but treat the aggregate effect as a 
nonpoint source. Point and nonpoint sources need to be treated differently 
in GIS (point, line, polygon, or field) and are likely to influence the form of 
analysis. Receptors can be people, the flora and fauna, properties and land, 
again with different ways of representing these in GIS with consequences 
for the modeling. It is, however, the modeling of the means by which the 
source has the ability to impact the receptors that is distinctive within the 
taxonomy:

Spatial coexistence: This approach assumes that there is a reasonably 
simple or obvious spatial link between sources and receptors. Thus, 
for example, by taking the floodplain and overlaying it on settle-
ments one might infer that anywhere where polygon “floodplain” 
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Modeling Approaches

Source Receptors

Figure 6.1
Modeling approaches in GIS and environmental modeling. (Adapted from Rejeski, D. (1993) 
In Environmental Modeling with GIS, ed. Goodchild et al. Oxford University Press, London, pp. 
318–331.)
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and polygon “settlement” spatially coincided, people were vulner-
able to a flood hazard. This approach relies heavily on conceptual 
and empirical models.

Source/pathway characterization: Not all spatial relationships between 
source and receptor can be conceived of as simply as is the case in 
the previous category. Where there is a significant and well-defined 
transport process linking source and receptor, then that transport 
process is explicitly modeled. Thus, this approach relies heavily on 
process models (deterministic or stochastic) that are either lumped 
parameter or distributed parameter.

Cluster detection: Whereas, the first two approaches in the taxonomy are 
ex ante, that is, are carried out to forward predict some event that can 
then be mitigated against in some way, this approach is ex post, that 
is, to detect that some event has or is happening to the receptors, 
to identify a source and then ensure that the hazard has ceased or 
needs to be mitigated. This is also empirical modeling using GIS, 
statistical techniques, and artificial neural networks (ANN) to search 
for space–time clusters in the event occurrences among the receptors 
that indicate that something has gone wrong.

Before coming to the case studies, we need to explore the difference 
between environmental modeling within GIS and environmental modeling 
with GIS. In the former, the entire environmental model is realized within 
GIS. In the latter case, GIS are linked with external models. Some would 
feel the distinction is unimportant; after all, it is possible to carry out the 
complete taxonomy of approaches within GIS. Well, yes and no. Both spa-
tial coexistence modeling and cluster detection are heavily weighted in their 
approaches toward the spatial dimension of phenomena and are eminently 
suitable to be carried out in GIS or GIS-like modules. One problem here is 
that most commercial GIS software are poorly endowed, if at all, with cluster 
detection methods and that these need to be programmed either as exter-
nally linked programs or using the GIS internal macro language capability. 
Source–pathway characterization is somewhat different. While fairly simple 
transport processes, for the most part reliant on routing over topography, 
can be programmed as internal macros, the implementation of efficient finite 
element method (FEM), for example, is beyond these macro tools despite 
their growing sophistication. For many source–pathway characterization 
approaches, it still remains far more satisfactory to use specific environ-
mental simulation software with GIS as an important complementary tool. 
This combined approach has grown in popularity due to the “dual recogni-
tion of environmental problems with compelling spatial properties, but also 
with a complexity that cannot be adequately explored through interroga-
tion and recombination of geographic data alone” (Clarke et al., 2000). But, 
there is another important reason. There are many instances, for example, 
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in engineering orientated applications where a client mandates the use of 
certain classes of model for which formal validation is available. In some 
places, such models are used as de facto standards and one’s own macro 
implemented in GIS isn’t going to cut much ice. They may even be quite spe-
cific about the nature of GIS software being used … and the database. This 
is a form of quality assurance where specification of tools of known quality 
means that the tools are not going to be the weakest link and are capable of 
supporting good quality work. Under these circumstances, tool coupling has 
to take place. This issue is considered in detail in Chapter 7.

Spatial Coexistence

This is the most common approach to GIS and environmental modeling and 
has been particularly popular throughout the history of GIS. After all, what 
is GIS good at—buffering, topological overlay, map algebra—all of which 
can be used to establish the spatial and temporal coexistence of sources and 
receptors. The transport mechanism remains implicit and largely unmod-
eled. If there is some spatial distance to be covered, this is usually mod-
eled through buffering as a surrogate for the specific transport process at 
work. But spatial coexistence can also relate to the way in which variables 
come together spatially to form combinations that produce a hazard (fac-
tor mapping). Then, using spatial coexistence again with possible receptors, 
vulnerability and risk are established. A small example of this approach of 
establishing hazard and then risk was illustrated in Chapter 5, Figure 5.10. 
On the basis of a conceptual model arising from an empirically inductive 
understanding of the factors that promote landsliding in the specific study 
area, then by assuming these can be mapped in GIS, a combination of over-
lay and Boolean selection reveals those areas where a hazard exists. By fur-
ther overlaying this result with the land cover layer, it would then be possible 
to identify which land uses were vulnerable, and if this included the class 
“village,” then which people were vulnerable. If necessary, buffering of the 
unstable areas would indicate any village on or dangerously near unstable 
terrain. Mason and Rosenbaum (2002) provide an example from the Piemonte 
region of northwest Italy where, because of the nature of the geology, block 
slides develop along discontinuities and bedding planes (these weaknesses 
within the soil allow blocks of soil and rock to detach as landslides dur-
ing heavy rainfall or earth tremors). Thus, slope failure is most likely to 
occur where the angle and aspect of a slope closely conforms to the dip and 
dip direction of the discontinuities. Using an equation in map algebra that 
resolves this relationship, Mason and Rosenbaum were able to map factor of 
safety (FoS) and, hence, hazard where FoS < 1 from slope and aspect raster 
layers derived from a digital elevation model (DEM). As stated before, such 
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an example is not a universally applicable model, but one empirically devel-
oped from field data to reflect the specific conditions in an area. The spatial 
coexistence approach has also traditionally been used in flood risk studies 
(e.g., Cotter and Campbell, 1987) where geomorphological features associ-
ated with flooding, such as floodplains or flood extents calculated by engi-
neers and hydrologists using simulation software, are overlaid with land use 
to identify settlements falling within these zones and, therefore, at risk.

The specific case study I would like to take you through in some detail 
concerns a small reservoir built using an earthfill dam at the head of a valley 
as the sole water supply to a small town farther downstream. Any damage to 
the reservoir could thus have potentially serious consequences for the resi-
dents of the town. The owners of the reservoir and their engineers were con-
cerned about the slope stability of the reservoir rim during heavy rainstorm 
events and during rapid drawdown of the water level. There may be occasions 
when drawdown of a reservoir is either desirable or necessary. Drawdown is 
undertaken for periodic safety checks of a dam and other structures associ-
ated with a reservoir. It also occurs when the bottom of a reservoir is being 
scoured through a scour pipe in order to remove some of the accumulated 
bottom sediments. If a reservoir fills up with sediment, it decreases in water 
storage capacity and can eventually become useless. If the drawdown is too 
rapid, the effect on the side slopes is equivalent to an extreme rainfall event. 
Because the water table is suddenly lowered causing water to flow out of the 
saturated slopes, this increases pore water pressure, lowers the FoS below 1 
and, thus, causes failure (Chapter 4). Figure 6.2 shows just such a slope failure 
at another reservoir in the region. Of particular concern to the engineers was 
the possibility of a large landslide entering the reservoir and causing a suf-
ficiently large wave that would propagate through the reservoir and overtop 
the dam causing damage to or even failure of the structure. The engineers 
had carried out some preliminary slope stability calculations of theoretical 
cross sections and had arrived at an empirical model based on slope angle 
and soil thickness, summarized in Figure 6.3. The impasse for the engineers 
was in identifying which parts of the reservoir rim were “unstable” accord-
ing to the model and which of these slopes might fail in such a way as to 
generate a large wave.

From a GIS perspective, this is a simple case of evaluating the spatial coex-
istence of slope angles with soil thickness. This resolves itself as four simple 
decision rules:

 1. If slope angle < 200, then “stable”

 2. If [slope angle ≥ 200 and < 350] and [soil thickness > (0.58 × slope 
angle – 8.21)], then “stable”

 3. If [slope angle ≥ 350 and < 400] and [soil thickness > (slope angle – 
22.5)], then “stable”

 4. Otherwise “unstable”
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Figure 6.2
An example of a reservoir rim failure due to rapid drawdown. (Photo courtesy of the author.)

0
0

5

y = 0.58x – 8.21

y = x – 22.5

‘Stable’

‘Unstable’

10

So
il 

Th
ic

kn
es

s (
m

)

15

20

10 20 30
Slope Angle (degrees)

40 50

Figure 6.3
Empirical model giving relationship between slope angle and soil thickness for identifying 
“stable” and “unstable” slopes (specific to the geology and rainfall regime of the area).
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Seemingly then, can two data layers—slope angle and soil thickness—
be established? Slope angle should present no problem if a DEM can be 
constructed, but a soil thickness layer is a bit more challenging, to say the 
least. A DEM could be readily established using a triangular irregular 
network (TIN) data structure (Chapter 2, Figure 2.11(e)) from survey data 
collected during the construction of the reservoir from which a contour 
map could be constructed and checked for accuracy (Figure 6.4(a); this is 
not the whole of the upper catchment, but only those areas immediately 
around the reservoir rim). In this particular instance, the TIN data struc-
ture, as a tessellation, was also used to store attributes rather than further 
decomposing into raster. This was because the TIN was constructed using 
the theory of “high information” landscape features (Heil and Brych, 1978; 
Brimicombe, 1985) that produces a consistent representation of topography 
whereby the TIN elements form meaningful topographic and geomorpho-
logical units. Since each TIN element is treated as a planar surface sub-
tended by its three vertices, it is a straightforward process to calculate the 
maximum slope angle for each TIN element (Figure 6.4(b)). To establish a 
map of soil thickness, a geomorphological mapping of pertinent features 
(Figure 6.4(c)) was carried out using aerial photographic interpretation 
(API), field inspection, and reference to the archive records of some explor-
atory drilling carried out prior to construction. From this study, it was pos-
sible to estimate soil thickness over the area (Figure 6.4(d)). At this point, 
it was possible to run through the decision rules and label slope elements 
“stable” or “unstable.” Job done? Well, no. Though many GIS analysts may 
well stop at this point. The problem is: How accurate is the result? As we 
shall see in Chapter 9, there are a number of algorithms for calculating 
gradient, each giving a slightly different answer. But the main cause of 
uncertainty is likely to be the estimate of soil thickness. I can be superbly 
confident of my geomorphological prowess and it would be nearly impos-
sible to check my estimates of soil thickness in the field, nevertheless, we 
need to recognize these attributes as best estimates and test the sensitivity 
of the results to reasonable changes in those estimates. In Chapter 8, we 
will look at the details of Monte Carlo simulation, but suffice to say here 
that the method involves repeated perturbations of the data and repeated 
calculation of the result in order to arrive at a best estimate of the true 
result. Thus, a series of both systematic and random changes were made 
to the soil thickness attributes and the model rerun numerous times. As a 
consequence of this sensitivity analysis (SA) (Figure 6.4(e)), it was possible 
to classify TIN elements as:

“Very unstable”: Those elements that were always classed as unsta-•	
ble regardless of the perturbation.

“Unstable”: Those elements remaining unstable at about the esti-•	
mated soil thickness or less.
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Figure 6.4
An investigation of reservoir rim stability involving a spatial coexistence approach on the basis 
of an empirical mode (Figure 6.3). See text for explanation. Continued
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“Marginally stable”: Those elements that were classified as unstable •	
only after a substantial systematic reduction in soil thickness.
“Stable”: Those elements that were always classed as stable regard-•	
less of the perturbation.

Job done? Well, not quite yet. Figure 6.4(e) is not yet a product with which 
the engineers can work. It’s the GIS spatial coexistence algorithmic answer, 
but it needs to be properly interpreted for meaning. For example, not all 
unstable slope elements may result in a single, large failure, some may be 
characterized by numerous small failures or failures that are likely to sub-
stantially break up before reaching the reservoir. This is the case on the 
higher slopes above the western end of the reservoir. An adequate interpre-
tation is achieved by referring back to the aerial photographs in the knowl-
edge of Figure 6.4(e) to identify potentially large landslide features for which 
the volume of their mass can be calculated from the GIS (Figure 6.4(f)). This 
then provides a product that the engineers can use to further their investiga-
tions. Following more detailed study by the engineers of specific features, 
they concluded that:

Normal operation of the reservoir would not cause failures around •	
the rim.
Rapid drawdown through indiscriminate use of the scour pipe could •	
cause failures and that appropriate operating procedures would 
need to be established.
Severe rainfall events would probably result in failures, but that the •	
waves generated were unlikely to cause damage to the dam.

Source–Pathway Characterization

The main difference between this approach and the previous one is that the 
transport mechanisms between sources and receptors or between inputs 
and outputs are explicitly modeled. This requires the relevant parameters to 
be quantified in order for the model to be calculated through for the entire 
process. There are many such process models in environmental science and 
engineering. In general, these either operate as lumped parameter or distrib-
uted parameter models, as discussed in Chapter 5. The lumped parameter 
models are either entirely nonspatial (e.g., the panda–bamboo interaction 
model in Chapter 5) or follow discrete spatial units, such as catchment 
areas. A drainage basin, for example, can be partitioned into a number of 
subcatchments where the parameters are being lumped for each subcatch-
ment. Thus, if one is considering the effect of several large drainage basins, 
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one effectively ends up with a distributed lumped parameter model of some 
complexity. This is the case in the first source–pathway study to be presented 
where we will be looking at the coupling of GIS and hydraulic modeling for 
basin management planning. The second study will be a fully distributed 
parameter modeling of coastal oil spills.

basin Management Planning

This case study comes from Hong Kong and involves the coupling of GIS 
(Genasys II) and hydraulic simulation modeling (MIKE 11) into a spatial 
decision support system (SDSS). Although such couplings are now com-
monplace, when this project was started in 1991, the approach was a 
novelty. Presented here are the aspects of the project and its background 
that are already in the public domain (United Nations, 1990; Brimicombe, 
1992; Townsend and Bartlett, 1992; Brimicombe and Bartlett, 1993; 1996; 
Drainage Services Department, 2008). We have already seen in the previ-
ous chapter that Hong Kong is a small region of just 1050 km2 of which 60% 
is mountainous terrain and which, with a population of about 6 million, 
has resulted in intense development. Average annual rainfall is 2225 mm, 
but tropical depressions and typhoons can result in rainfall intensities that 
can reach 90 mm/hr. The steep terrain leads to rapid runoff concentration 
and flash flooding in lowland basins. In the period of 1980 to 1990, 84 major 
flood events occurred, many lasting two or more days. This compares with 
just 16 events in the 1960s, rising to 38 in the 1970s (www.dsd.gov.hk/
flood_prevention/flooding_problems/historic_data/index.htm). Flooding 
occurs mostly in lowland basins and natural floodplains in the northern 
part of the region (Figure 6.5). This increase in the number of flood events 
reflects the changing land use of the region over this period. There are 
three key elements:

Urbanization: Building of new towns in low-lying and floodplain areas 
(Figure 6.6).

Rural development: A combination of village expansion, the transforma-
tion of agricultural land to small industry and storage parks (con-
tainers, building materials, construction plant, and so on) and the 
abandonment of agriculture while speculating on development.

Floodplain reduction: The construction of ponds for fish and duck farm-
ing with bunds constructed to above flood level over substantial 
areas (Figure 6.7) has lead to a reduction in floodplain area.

These have all led to a scenario where not only was the number of floods 
increasing, but they were becoming more severe and taking longer to sub-
side. Photographs of these flood events can be found at www.dsd.gov.hk/
flood_prevention/flooding_problems/flood_photos/index.htm.
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Figure 6.5
The Hong Kong Special Administrative Region of the People’s Republic of China showing 
flood prone areas in the lowland basins of the northern and western New Territories.

Figure 6.6
An example of new town development in low-lying basins; note backdrop of mountainous ter-
rain. (Photo courtesy of the author.)
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In 1989, in recognition of the growing problem, the Hong Kong government 
established the Drainage Services Department (HKDSD) to formulate a flood 
prevention strategy through basin management planning. These plans might 
include a mix of river training, flood storage schemes, flood proofing, and 
land use development control. The Town Planning Ordinance was amended 
to curb unauthorized development and required all new developments to 
undertake a specific drainage impact assessment. In 1991, a “Territorial Land 
Drainage and Flood Control Strategy Study” was commissioned and would 
form the basis for drawing up 1:5000 scale basin management plans (BMP) for 
each drainage basin. It was in this context that a coupling of GIS and hydrau-
lic modeling into a SDSS first took place and was to become established prac-
tice in Hong Kong.

In this project, the decision to use hydraulic modeling dominated the 
architecture of the system. Hydraulic modeling is used to simulate runoff 
along a drainage network in response to specified rainfall events. Models 
are constructed using true channel details (cross section, gradient), aggre-
gated runoff parameters, floodplain storage mechanisms, and significant 
structures, such as bridges, culverts, and weirs. Thus, hydraulic modeling 
can be expected to give a truer simulation of channel capacities and their 
flows than hydrological modeling. Apart from studying the existing situa-
tion, hydraulic modeling is widely used as a design tool for remedial and 

Figure 6.7
Pictured is an example of fish and duck pond development reducing the area of floodplain. 
(Photo courtesy of the author.)



Case Studies in GIS, Environmental Modeling, and Engineering 161

mitigation measures and, therefore, can be used in “what if”-type analyses. 
The simulation is based on nodes (modeling points) linked by successive 
reaches of drainage channels into a topological network. Nodes are usually 
located at typical cross sections on a reach (rather than at a confluence) or used 
to represent locations of flood storage. Each node receives the cumulative 
flow from any upstream node and its own area of subcatchment. Parameters 
describing the flow accumulation within the subcatchment are lumped and 
attributed to the node. Thus, although technically this could be described 
as a lumped parameter model, there may be 100 or more subcatchments in 
a typically sized drainage basin for Hong Kong. The choice of GIS software 
rested on two key factors. The first was the need to handle large data sets in 
a timely manner, which, given the power of PCs and their storage capacity in 
1991, meant that realistically the software needed to run on a UNIX worksta-
tion. Second, as will become evident below, the software needed to be able 
to handle fully topological vector data, TIN structures, and raster data in an 
integrated way. At the time, GIS and hydraulic modeling were only loosely 
coupled in as much as they were run independently with only the exchange 
of data between the two using reformatted ASCII (text) files. The overall pat-
tern that developed was one of using GIS to integrate and preprocess data, 
which are passed on to the simulation and then to accept back the results of 
the simulation into GIS for postprocessing. By linking proprietary GIS and 
hydraulic modeling software in this way, the study team was able to assess 
flood hazard for current and projected land use scenarios over a range of 
rainfall events (1:2 through 1:200-year return periods) and for a variety of 
mitigation measures. On the basis of these multiple outcomes, well-founded 
decisions could be made regarding appropriate proposals and options for 
the BMP.

Figure 6.8 summarizes the range of data handled by GIS on this project 
and the preprocessing relationship with the hydraulic modeling. In 1991, 
digital maps of rural areas were not available. Typically, paper topographic 
maps are themselves prepared in layers with separate masters for con-
tours, detail (roads, buildings, streams), symbols, and annotation (e.g., place 
names). Therefore, it was possible to go back to original masters, choose 
only the contours and the detail layers, which could then be scanned and 
vectorized. In this way, scanned 1:5000 scale topographic maps, which were 
then edge-matched into seamless base mapping, were used as the means to 
co-register and, therefore, integrate all the other data sets. There were five 
sets of other data:

Historic flood events: Two well-documented flood events (1988 and 1989) 
were mapped from oblique photographs of the floods taken from a 
helicopter, from press photos, and from questionnaire interviews of 
residents. Thus, the flood extents were mapped differentiating cer-
tain and uncertain boundaries. These could be used as part of the 
model calibration.
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Drainage structures: This documented the location and attributes of all 
bridges, weirs, and culverts that would influence channel flow. These 
were collected by field survey during which channel cross sections 
were measured to be input directly to the simulation model.

Sub-basin parameters: These were a series of map layers derived mostly 
from API to produce the lumped parameters at modeling nodes. 
These are discussed in detail below.

Development scenarios: These were a series of future development sce-
narios that would replace current land use in the lumped parameter-
ization of “what if”-type analyses and included various mitigation 
options, such as river training.

Floodplain elevations: Spot-heights were digitized from 1:1000 topo-
graphic maps in order to build up detailed floodplain DEM so as to 
extend the field surveyed channel cross sections to the edge of the 
floodplain, but also to act as a key data layer in the postprocessing of 
the simulation outputs.

The process of preparing the lumped parameters for the simulation mod-
eling is as follows. A land use classification is created that reflects run-
off characteristics and which can be consistently equated to the U.S. Soil 
Conservation Service’s (SCS) runoff curve numbers (CN). These are numbers 
in the range 0 to 100 and can be loosely interpreted as the proportion of 
rainfall contributing to storm runoff depending on the nature of soils and 
vegetation. In the Hong Kong case, with intense rainfall on steep slopes 
that quickly exceeds the infiltration capacity, runoff is most influenced by 
land cover types rather than by soil types, which thus were not mapped 
separately. The highest CN is usually assigned to urban areas where there is 
little infiltration or storage, a low CN would be assigned to woodland, and 
the lowest to, say, a commercial fish pond where all the rainfall is retained 
within the pond. Eighteen classes of land cover were mapped by API and 
digitized into GIS. There is a tendency for tropical terrain to be character-
ized by a distinct break of slope between the steeper mountainous terrain 
and the gently sloping valley floors (noticeable in Figure 6.6 and Figure 6.7). 
This is an important feature in the simulation modeling that needs to be 
distinguished if realistic unit hydrographs are to be developed and so this 
too was mapped as a polygon boundary between “upland” and “lowland” 
zones. Land cover polygons together with upland and lowland areas for a 
small catchment are given in Figure 6.9(a). The engineers would identify the 
proposed locations of modeling nodes. These would be screen digitized into 
GIS and snapped to the drainage network. The coordinates of each node and 
along stream distance to the next node were output to the simulation model. 
From API, the subcatchments subtended by each node are identified and 
digitized (Figure 6.9(b)). The three layers—land cover, break of slope, and 
subcatchments—are then overlaid (Figure 6.9(c)) and tables produced giving 
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total area for each class of land cover in the upland and lowland areas of each 
subcatchment. These are used to produce an area-weighted average CN for 
the upland and lowland portions of each subcatchment and are the lumped 
parameters used as input to the flood simulation modeling.

The hydraulic modeling used for the flood simulation was pseudo 2D, 
solving the full St. Venant equations to simulate variations of flow in space 
and time. The St. Venant equations assume that channel discharge can be 
calculated from the average cross-sectional velocity and depth and are based 
on a mass balance equation (6.1) and a momentum balance Equation (6.2), 
which assumes that water is incompressible (Beven, 2001):
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where A = cross-sectional area, P = wetted perimeter, v = average veloc-
ity, h = average depth, So = bed slope, I = lateral inflow per unit length of 
channel, g = gravitational acceleration, f = the Darcy–Weisbach uniform 
roughness coefficient.
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Illustrated is the role of GIS in data integration and preprocessing of inputs for the hydraulic 
modeling. (Note: OZP = outline zoning plans.)
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Figure 6.9
Preparation of lumped parameters from landscape characteristics: (a) land cover boundaries 
with upland and lowland areas, (b) modeling nodes and sub-catchments, (c) overlay of all three 
layers. Note: Tick mark spacing = 1000 m. (Based on Brimicombe, A.J., and Bartlett, J.M. (1993) 
Proceedings of the 3rd International Workshop on GIS, Beijing, China, 2: 173–182.)
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In the pseudo two-dimensional approach, flow along reaches is modeled 
as 1D (at a node) using mean velocities, whereas overflow into floodplain 
storage and flow can also be simulated at representative nodes. Structures, 
such as bridges, weirs, and dams, are fully described. Calibration of the 
models was achieved using historical rainfall data and corresponding data 
from gauging stations giving velocity and stream level at a number of loca-
tions and by reference to the historic flood extents mapped in GIS. Output 
from the simulation is a time series for each node giving the height and the 
velocity of the flow. Since the simulation output refers to a series of points 
(the nodes), the data need further processing in order to visualize the flood 
extents and assess the impacts. Figure 6.10 summarizes this postprocessing 
carried out in GIS. At the time it was not possible to use the entire simula-
tion output of height and velocity. Today, this could be resolved as a series 
of multiple maps brought together in an animation to show the progress of 
the flood from initial rise until it drains away. But, in 1991, that technology 
wasn’t quite with us and with the need to evaluate multiple scenarios, time 
was tight anyway. With no satisfactory way of extrapolating velocities over 
the floodplain, postprocessing focused on flood height. Because the catch-
ments are relatively small and all nodes reach their peak flow within a short 
time of each other, we could take the maximum flow height at each node 
and use this to extrapolate flood extent and depth across the entire flood-
plain. This is not as straightforward as it may sound. First, floodplains usu-
ally have a complex topography including levees and terraces. The extent 
of these features was mapped from aerial photography. Each terrace was 
modeled as a best fit polynomial from available spot heights with terrace 
scarps as sharp breaks in the terrain. This allowed a more accurate TIN of 
the floodplain topography to be created, which was then transformed into 
a raster DEM. Second, floods also have a subtle topography partly reflect-
ing the gross characteristics of the floodplain, the ability of tributaries to 
drain into the main valley and damming effects of structures. It is entirely 
wrong to model a flood as a bath or pond with a hydrostatic water level. So, 
the flood topography has to be modeled. From Figure 6.9(b), it is evident 
that the number of nodes represents a sparse data set and merely triangu-
lating them in order to contour maximum flood height is not very satisfac-
tory. Besides, where the nodes follow a channel in more or less a straightline 
(eastern side of Figure 6.9(b)) triangulation is difficult (How do you create a 
triangle from three points in a straight line?) and the results would be unac-
ceptable. The strategy that was adopted is illustrated in Figure 6.11. At each 
modeling node, a series of pseudo nodes having the same maximum flood 
height were created perpendicular to the direction of flow and extended to 
beyond the edge of the floodplain (Figure 6.11(a)). This assumes that at any 
modeling node, the cross section of its floodplain has the same flood height. 
This can then be triangulated into a TIN and a flood DEM thus extrapolated. 
The flood DEM and the floodplain DEM are then evaluated using map alge-
bra (Figure 6.11(b)) using first a MAXIMUM function and then a SUBTRACT 
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Figure 6.10
Shown is a GIS postprocessing of outputs from the hydraulic simulation modeling. Note: 1:100 
is a 1 in 100 year storm event.



Case Studies in GIS, Environmental Modeling, and Engineering 167

function to arrive at a raster map that shows the extent of flooding (all non-
zero cells) and where positive raster values represent flood depth over the 
floodplain. This latter value represents the degree of hazard for the relevant 
return period being simulated. Figure 6.12(a) shows a small portion of flood-
plain DEM from Figure 6.9 reflecting floodplain and valley-side terraces and 
Figure 6.12(b) shows flood depth for a simulated 1:10-year flood in relation to 
land cover polygons.

Not only is it possible to evaluate the hazard and risk associated with a 
range of return period rainstorm events (1:2-year to 1:200-year), but, in a cycle 
of GIS preprocessing, flood modeling, and GIS postprocessing, it is possible 
to evaluate a range of future development scenarios and mitigation measures 
as “what if”-type analyses for the same range of return periods. The multiple 

(a)

Stream
Flood ‘topography’

Floodplain topography

Maximum flood at node

Main ValleyTributary Valley

Landform topography

(b)

Figure 6.11
The principle of extrapolating of a flood extent from modeling nodes: (a) creating and trian-
gulation of pseudo nodes, (b) cross-sectional illustration of the intersection of flood and flood-
plain DEMs.
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Figure 6.12
(a) Raster floodplain topography (10-m cells) to reflect terraces and (b) flood depth for a simu-
lated 1:10-year flood in relation to land use polygons. Note: Tick mark spacing = 250 m. (b: 
Based on Brimicombe, A.J., and Bartlett, J.M. (1993) Proceedings of the 3rd International Workshop 
on GIS, Beijing, China, 2: 173–182.)
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outcomes provide the basis for decision-making on the content of a BMP 
(Figure 6.10). In 1991, this approach was novel and showed a number of dis-
tinct advantages in coupling GIS and environmental simulation modeling:

Spatial data integration: For the compilation of BMP, data must necessar-
ily be collected by a variety of techniques and from a large number 
of sources. The data inevitably comes in different formats and at dif-
ferent scales. This problem becomes acute where there is intensive 
land use that results in overlapping demands on land. GIS make the 
task of integrating the data into a common format possible and also 
promote more effective use of the data.

Quantification of parameters: Traditionally, paper maps and planimeters 
were used to measure areas. Measuring the area of all the polygons 
in Figure 6.9(c) by hand would be a daunting task and probably of 
questionable accuracy (and this is only a small catchment; larger 
catchments typically had tens of thousands of polygons after topo-
logical overlay). GIS can automate this process.

Flood extent and depth: Again, traditionally carried out by inspection 
of paper maps to find the flood extent. Such manual production of 
flood depths is difficult to achieve with any certainty. GIS can again 
automate this task for the production of hazard and risk maps.

Visual assessment of model calibration: The automated hazard maps pro-
vided the engineers with a new tool to visualize the outputs of their 
models. Not only could simulated floods be compared spatially 
with historical events during calibration, but they could more easily 
detect rogue parameter values (e.g., channel friction, bridge dimen-
sions) due to counter-intuitive flood depths in the hazard maps.

“What if”-type analyses: The advantages cited above allow a wide range 
of options to be processed and evaluated in a spatial decision sup-
port framework.

Automated cartography: Because all the spatial data are integrated in GIS, 
the system can be efficiently used in the final reporting of a BMP by 
creating all the necessary cartographic products.

Coastal Oil Spill Modeling

Coastal oil spills are serious environmental disasters often leading to signifi-
cant long-term impacts. From 1978 to 1995, there were in excess of 4,100 major 
oil spills of 10,000 gallons or more (Etkin and Welch, 1997). There has, how-
ever, been a downward trend in the number of major incidences from a peak 
in 1991, but with approximately 3 billion gallons of oil in daily use worldwide, 
a large proportion of which is transported at sea, the threat of coastal oil spills 
remains acute. On Friday, March 24, 1989, the Exxon Valdez, carrying 1.25 
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million barrels of crude oil, ran hard aground on Blight Reef, Prince William 
Sound, Alaska, spilling 258,000 barrels of oil mostly in the first few hours. 
Since contingency disaster planning had only focused on spills of up to 2,000 
barrels, the spill could not be contained and instead spread to nearly 2,000 km 
of coastline devastating fisheries, wildlife, and scenic beauty. Restoration cost 
over $10 billion. On Thursday February 15, 1996, the Sea Empress ran aground 
in the entrance to Milford Haven, United Kingdom. Over the following two 
days, further damage occurred due to wind and strong tides. More than 7,200 
tons of fuel oil were spilled, 5,000 tons of which reached the Pembrokeshire 
coast, Wales, polluting 200 km of shoreline including 100 beaches with devas-
tation to wildlife and fisheries. The U.K. government’s estimate for cleanup, 
salvage, and losses of fisheries and tourism was up to £43 million (Harris, 
1997). On Tuesday November 19, 2002, the Prestige broke up and sank 210 km 
off Spain’s northern coast. A few days earlier, the Prestige had been holed off 
Galicia, Spain, spreading oil to the nearby coast. The Spanish authorities had 
ordered the tanker towed away from the coast with perhaps inevitable con-
sequences. For at least two months, oil continued to seep from the wreck to 
be spread by tide and wind onto the sandy beaches around the Bay of Biscay 
from Galicia to La Rochelle in France with again devastation to wildlife, fish-
eries, and tourism with severe social and economic consequences in many 
coastal towns and villages.

In a coastal oil spill incident, oil floats and spreads out rapidly across the 
water surface to form a thin layer—a slick. As the spreading process con-
tinues, the layer becomes progressively thinner, finally becoming a sheen. 
Complex interrelated physical, chemical, and biological processes depending 
on the type of oil, the hydrodynamics, and other environmental conditions 
govern the behavior of the slick and the sheen. Drifting of the oil is mainly 
by advection and diffusion due to currents (tide and wind). Weathering of 
the oil in transport leads to spreading, evaporation, photochemical reac-
tions, dissolution, and sedimentation, which, in turn, lead to changes in the 
volume, mass, and physiochemical properties of the spilled oil (Sebastiao 
and Soares, 1995; ASCE Task Committee on Modeling of Oil Spill, 1996). 
Significant efforts are made worldwide in oil spill prevention, preparedness 
and impact assessment in which GIS adopt their usual role in the integration 
and handling of relevant spatial data. Analysis and assessment of the risks, 
however, rely heavily on numerical simulation of coastal oil spill behavior 
so that the environmental impact assessment (EIA) and contingency plan-
ning can be pertinent in the protection of sensitive areas and installations. 
Simulation of oil spill behavior requires more than one model, each having a 
specific task: hydrodynamic modeling, trajectory modeling, and fate model-
ing. The structure of typical coastal oil spill modeling is given in Figure 6.13, 
which represents a dynamic 2D distributed parameter model.

We have already seen the hydrodynamic modeling in Chapter 5. Figure 5.25 
showed an example of currents simulated using FEM for hydrodynamic 
modeling. The tidal currents calculated from the forced inputs at the open 
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boundary were shown graphically with the arrow size proportional to the 
speed of the current. The arrow direction, as shown in Figure 5.25, is actually 
a resultant vector calculated from two components: a northerly component U 
and an easterly component V. Each of these components has itself two com-
ponents, which describe it: a velocity in m/s Ua Va and a deflection in radians 
Ug Vg. For each tidal constituent in the hydrodynamic modeling, the current 
simulation can be represented by the following equations (Li, 2001):

 U(x, t) = Ua · cos(ωt – Ug)   (6.3)

 V(x, t) = Va · cos(ωt – Vg)   (6.4)

where Ua = amplitude of northerly component, Ug = deflection of northerly 
component, Va = amplitude of easterly component, Vg = deflection of easterly 
component, ω = angular frequency of the relevant tidal constituent, x = loca-
tion, t = time step.

The purpose of the hydrodynamic modeling is to calculate a time series 
of currents from tidal constituents and bathymetry over the whole coastal 
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Figure 6.13
Typical structure of coastal oil spill modeling. (Based on Li, Y., Brimicombe, A.J., and Ralphs, 
M.P. (1998) In Oil and hydrocarbon spills: Modelling, analysis and control. Computational Mechanics 
Publication, Southampton, U.K.; Li, Y., Brimicombe, A.J., and Ralphs, M.P. (2000) Computers, 
Environment and Urban Systems 24: 95–108.)
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study area and is in itself a means of calculating and distributing param-
eters to which are added further distributed parameters for the trajectory 
and fate modeling. Given these distributed parameters, many of which are 
in time series, the trajectory model becomes predominantly a routing simu-
lation that requires an arithmetic solution across a grid. Consequently, the 
output from the hydrodynamic model is reinterpolated into a grid with 
additional inputs, such as mean current, wind direction (for wind-driven 
currents), and oil properties. The trajectory model used here has a stochastic 
component to simulate the random thinning and spreading of oil droplets 
in a slick. Figure 6.14 shows an example of coastal oil spill simulation using 
the hydrodynamic modeling shown in Chapter 5, Figure 5.25. It has been 
assumed that 100 units of oil have been spilled at a single location (though 
a continuous spill while a tanker is still moving is perfectly possible). The 
trajectory is modeled on a 200 m cell grid and the results are shown for half 
hourly intervals starting 0.5 hrs after the spill. After 3 hrs, the majority of the 
oil has been deposited on the coast with one small slick being carried down 
the coast and then easterly by the tidal currents. We will return to aspects of 
this example in subsequent chapters.

GIS are increasingly being used in conjunction with coastal oil spill mod-
eling as a tool for integrating and preprocessing spatial data inputs (e.g., 
shoreline, bathymetry) and for postprocessing and visualization of the 
model outputs. Postprocessing activities can include contingency planning 
(Jensen et al., 1992), oil spill sensitivity mapping (Jensen et al., 1998), making 
operational decisions (Trudel et al., 1987), and damage assessments (Reed 
and French, 1991).

Cluster Detection

This ex post approach is structured quite differently from the previous ones. 
The initial phase is predominantly exploratory of spatial patterns either by 
statistical or geocomputational techniques and, once an abnormal concentra-
tion of some effect has been detected, some form of environmental simulation 
modeling may be used in order to confirm the transport and fate mechanisms 
from the revealed or suspected source to the receptors as a precursor to the 
implementation of mitigation measures. Many of these applications center 
around the investigation of diseases caused by unsanitary conditions and/
or pollution and have strong roots in spatial epidemiology (Lawson, 2001) 
and environmental engineering (Nazaroff and Alvarez-Cohen, 2001). But, as 
we shall see next, these techniques can also be applied to purely engineering 
phenomena, such as, for example, pipe bursts, landslides, subsidence, and so 
on. But first, we begin with some principles of the approach.
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Recognition of spatial patterns to events have been a cornerstone of spatial 
epidemiology since John Snow (a physician to Queen Victoria) in 1854 deter-
mined the source of a cholera epidemic in the Soho district of London to be 
a pump on Broad Street. Once the handle of the pump had been removed, 
the epidemic subsided. Snow’s revelation is often attributed to a mapping of 
the cases, but actually this map was only created after the event for a mono-
graph recording his observations and analysis (Snow, 1855). Nevertheless, 
his correct deduction of the cause arose first from an observation that the 
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Figure 6.14
Simulation of an oil slick trajectory from a stricken tanker (location marked +) at half hourly 
intervals from 0.5 hrs to 3.0 hrs.
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main cluster of deaths in this epidemic centered geographically on the said 
pump and, secondly, that he had previously hypothesized that cholera was 
ingested from contaminated drinking water (which up until then was not a 
proven hypothesis), otherwise he might not have focused on the pump at all. 
Subsequent forensic investigation of the Broad Street pump confirmed that 
sewage had leaked into the well causing the contamination. The significance 
of Snow’s work was not so much that he drew a map, but that he set in place 
an approach that is still relevant today: investigate patterns for indications of 
abnormality or concentration (spatially and/or temporally), hypothesize and 
forensically confirm the cause of the pattern, then take necessary corrective 
action. In modern spatial epidemiology, spatial distributions can be exam-
ined in three ways (Lawson, 2001):

 1. Disease mapping: This concerns the use of models to characterize 
and uncover the overall structure of mapped disease distributions.

 2. Ecological analysis: Here, explanatory factors for a disease are 
already known and the analysis is carried out at an aggregated spa-
tial level to compare incidence rates with measures of the explana-
tory factors.

 3. Disease clustering: This is of most interest to us in the context of 
this chapter. This concerns the detection and analysis of abnormal/
unusual spatial or temporal clusters that indicate an elevated inci-
dence or risk of a disease. Within this are a number of approaches:

Nonspecific•	 : This is a global, statistical approach that provides an 
assessment of the overall pattern for a complete map, usually the 
degree to which a mapped distribution may be characterized as 
being regular, random, or clustered.

Specific•	 : The aim here is to identify specifically where clusters are 
should they indeed be found to exist, and can be carried out in 
one of the two ways:

Focused − : This is where a putative cause is suspected or known 
a priori, such as pollution from a factory, which then focuses 
the search for clusters.

Nonfocused − : Where there are no a priori assumptions and an 
exploratory search is carried out to find clusters wherever 
they may occur.

An event, such as catching a disease, the occurrence of a landslide, or 
a pipe burst, can be treated as a binary event (0, 1) in as much as either 
it has happened or it hasn’t. You don’t get half ill and a pipe doesn’t par-
tially burst (unless you want to get pedantic and say it just leaks). Such 
binary events for the purpose of a specific cluster analysis are best treated 
as point data. Although there are a range of techniques for analyzing 
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spatially aggregated data (e.g., Besag and Newell, 1991; Anselin, 1995; Ord 
and Getis, 1995), we will focus here on point binary events. Apart from 
spatial epidemiology, the analysis of such data has a long tradition in geog-
raphy (Dacey, 1960; Knox, 1964; Cliff and Ord, 1981) and ecology (Clark and 
Evans, 1954; Greig-Smith, 1964) and has received renewed interest within 
GIS and geocomputational frameworks (Fotheringham and Zhan, 1996; 
Gatrell et al., 1996; Openshaw, 1998; Brimicombe and Tsui, 2000; Atkinson 
and Unwin, 2002), and more recently within spatial data mining (Miller 
and Han, 2001; Brimicombe, 2002; 2006; Jacquez, 2008). But what is a clus-
ter? Unfortunately there is no standard definition, but, instead, two broadly 
defined classes of cluster:

The first comes from the mainstream statistics of cluster analysis •	
arising from the work of Sokal and Sneath (1963). Thus, clustering is 
an act of grouping by statistical means which, when applied to spa-
tial data, seeks to form a segmentation into regions or clusters, which 
minimize within-cluster variation, but maximize between-cluster 
variation. There is a general expectation that the spatial clustering 
will mutually exclusively include all points and, therefore, is space-
filling within the geographical extent of the data (e.g., Murray and 
Estivill-Castro, 1998; Halls et al., 2001; Estivill-Castro and Lee, 2002). 
With a spatial segmentation, further analysis of this form of cluster-
ing usually leads to aggregated data techniques (cited above).

The other class of cluster is concerned with “hotspots.” These can be •	
loosely defined as a localized excess of some incidence rate and are 
typified by Openshaw’s Geographical Analysis Machine (GAM, http://
www.ccg.leeds.ac.uk/software/gam) and its later developments 
(Openshaw et al., 1987; Openshaw, 1998). This definition of a clus-
ter is well suited to binary event occurrences. Unlike the statistical 
approach, there is no expectation that all points in the data set will 
be uniquely assigned to a cluster, only some of the points are neces-
sarily identified as belonging to hotspots and these then remain the 
focus of the analysis. With this type of clustering, the null hypothe-
sis of no clustering is a random event occurrence free from locational 
constraints and would thus form a Poisson distribution (Harvey, 
1966; Bailey and Gatrell, 1995). Because the recognition of this type 
of cluster is in relation to some incidence rate, the significance of 
clustering is often evaluated against an underlying “at risk” or con-
trol population. This is a critical issue because misspecification is 
clearly going to lead to erroneous results. In some applications (e.g., 
data mining) the “at risk” population may be identifiable at the out-
set and for yet other applications (e.g., landslides, subsidence), the 
notion of an “at risk” population, such as all those parts of a slope 
that are vulnerable to failure, may have little meaning. Nevertheless, 
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it is this type of cluster that is sought in cluster detection approaches 
to GIS and environmental modeling.

The eye is very quick to detect clusters of objects on the basis of proximity, 
concentration, and density change (Sadahiro, 1997), but in making objective 
decisions on comparative degree of clustering, such as differences between 
cluster patterns and separating out randomness, we remain fallible. We, 
therefore, need formulae and computational methods. One basic approach is 
the nearest-neighbor distance statistic R first developed by Clark and Evans 
(1954), defined as:
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where ra  = average nearest neighbor distance, re  = expected average nearest 
neighbor distance when random, A = area of bounded region of interest, d = 
distance of a point to its nearest neighbor, n = number of points.

R approaches 0 if the pattern is clustered, R = 1 if the pattern is random, 
and R = 2.1491 if the pattern is uniform. Greig-Smith (1964) developed quadrat 
analysis as a means of evaluating hypotheses about the nature of processes 
generating point patterns. Calculated from point counts in each quadrat, his 
index of cluster size (ICS) explicitly measures against the moments of a Poisson 
distribution (where variance equals the mean):

 ICS
x

= −σ2
1  (6.6)

where σ2 = variance, x  = mean.
If ICS = 0, the pattern is random, if ICS < 0, the pattern tends toward reg-

ularity, and if ICS > 0, the pattern tends toward clustering. R and ICS are 
both global statistics and both suffer from serious scale effects. For R, as A is 
increased in relation to a fixed distribution of points, so the statistic reduces 
toward 0 (clustered). For ICS, the scale effect is less straightforward and an 
example is given in Figure 6.15.

An approach that is increasingly popular in GIS is density mapping. An 
example of this was given in Chapter 5, Figure 5.11(a) in relation to the point 
occurrences of landslides. Density mapping is available as a function in the 
Spatial Analyst extension to ArcView, while Atkinson and Unwin (2002) 
have placed in the public domain a MapBasic code for density mapping in 
MapInfo. The simplest form of density estimation uses a “moving window” 
over each grid cell in turn to count the number of data points, divide by 
the area of the moving window and transform to a density measure per sq 
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km or other spatial unit. A more sophisticated approach uses kernel estima-
tors that uses either a fixed search area or are adaptive in their search area 
(Fotheringham et al., 2000). The kernel assumes the shape of an assigned 
probability density function, such as a bell curve, which provides an inverse 
distance weighting to the points that fall within it when calculating the local 
density. A parameter known as the bandwidth determines the lateral extent 
of the kernel. Specification of an appropriate bandwidth is by no means 
straightforward nor necessarily intuitive. If too small, the result becomes 
spiky; if too large, the result becomes overly smoothed. Some trial-and-error 
may be necessary though Fotheringham et al. suggest a starting point as:

 h
nopt = 





2
3

0 25.

σ  (6.7)

where hopt = optimum bandwidth, n = number of points, σ = standard devia-
tion of point distances from the mean center of the point distribution (i.e., the 
standard distance).

The GAM of Openshaw et al. (1987) is an exhaustive heuristic search that 
has some resemblance to a “moving window” approach. Instead of fixed 
size, the moving window is a circle that when centered on a grid cell starts 
off small and is progressively increased in size to a maximum. At each incre-
ment, the points that fall within the circle are tested for significance against a 
background “at risk” population. If the result is significant, the circle is plot-
ted. When all the circles have been tested, the moving window moves to the 
next grid cell and eventually around the entire map. In the current version, 
GAM/K (Openshaw, 1998), a kernel smoothing is applied to the incidence 
of significant circles to produce a density surface. When first conceived, this 
kind of exhaustive heuristic could only be run on supercomputers, but can 
now run on PCs.

Cluster detection methods are an area of ongoing research finding increas-
ingly wider application in health, crime, education, business, and engineering. 
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Figure 6.15
An example of scale effect on index of cluster size (ICS) with changing quadrat size. (Based on 
Tsui, P.H.Y., and Brimicombe, A.J. (1997) Transactions in GIS 3: 267–279.)
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Because so many books and papers concentrate on epidemiological applica-
tions, I thought I would present a case study that has its genesis in a real 
engineering problem: burst PVC (polyvinyl chloride) water pipes. This is a 
significant problem for any water utility. Because of confidentiality issues, 
however, the data presented here has had to be taken from elsewhere, but is, 
nevertheless, a realistic simulation. The method of cluster detection is a vari-
able resolution approach called Geo-ProZone (GPZ) analysis—geographical 
proximity zones—and is a two-stage process, first looking at density cluster-
ing and then at risk. There is good reason for this two-stage process. Density 
clustering of counts (point events) represents workload in emergency call-out 
to fix the problem. The results can be used for operational decisions about 
crews and stockpiling. However, as might be expected, more call-outs can 
occur where there are more pipes in the ground. The risk mapping, there-
fore, identifies areas of excessive incidence for a given unit length of pipe and 
alerts the utility to the presence of some particular causal factors (manufac-
ture, method of laying, substrate materials, traffic vibration) that may signal 
the need for pipe replacement or change in practice when laying new pipes.

The variable resolution approach has its genesis in resolving the scale 
problems associated with handling many types of geographical data, 
including point events, by using a computational heuristic technique (Tsui 
and Brimicombe, 1997; Brimicombe and Tsui, 2000; Brimicombe, 2002; 2006). 
Take, for example, the quadrat analysis given in Figure 6.15 where ICS value 
changes in response to grid size, usually in unpredictable ways. Now com-
pare it with Figure 6.16 where a variable resolution representation that is 
quadtree-like gives an ICS that indicates some clustering. While a variable 
resolution ICS = 1.13 differs from all the others in Figure 6.15, it is intuitive of 
the initial pattern. But, we can test the idea. Figure 6.17 shows two point data 
sets of 200 points each, one mathematically simulated to be random, the other 
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Figure 6.16
A variable resolution solution to the quadrat analysis scaling problems. (Based on Tsui, P.H.Y., 
and Brimicombe, A.J. (1997) Transactions in GIS 3: 267–279.)
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clustered. The random data set has R 1.047 (R 1 is random), the clustered data 
set has R 0.429 (R 0 is perfectly clustered with all points on the same spot). 
Variable resolution ICS 0.105 for the random data (ICS 0 is random) and is 
4.818 for the clustered data. Further testing against other techniques can be 
found in Brimicombe and Tsui (2000). Visualization of the GPZ in Figure 6.17 
allows any density clusters to be quickly identified.

The GPZ algorithm works as follows:

 1. If there is no spatial boundary (e.g., administrative, catchment area), 
generate a 1% buffered convex hull around the data set.

 2. Calculate the nearest neighbor distances.

 3. Determine cell sizes in a hierarchical tessellation from the entire 
bounded data set down to a minimum (atomic) size mediated 
between median nearest neighbor distance and re  in Formula (6.5).
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Figure 6.17
Geo-ProZone, geographical proximity zones on a random and a clustered point data set for 
verification of the technique. See text for explanation.
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 4. Divide cells into successively smaller units unless:

It does not contain any points.•	

The smaller cells will have a variance that falls below a heuristic •	
threshold.

The atomic cell size has been reached.•	

 5. Calculate variable resolution ICS.

 6. Calculate density per sq km and density classes per atomic cell.

 7. Partition “at risk” data (if available) according to the cell arrange-
ment from the previous step.

 8. Calculate risk (see below) and robust normalized risk (see 
Chapter 10).

 9. Choose class interval, merge adjacent cells of same class interval and 
display.

The case study data in Figure 6.18(a) shows the distribution of pipe bursts 
with the buffered convex hull. Usually such data sets contain thousands of 
records over large areas, but these would be hard to present in a book of this 
format. The distribution of bursts appears clustered and there seems to be 
two large patches of clusters. However, there may be some small patches 
where bursts, within the scale of the map, are superimposed and these would 
not be evident to the eye. The variable resolution ICS = 4.01, thus confirming 
an overall clustered pattern. The GPZ analysis of density classes is given 
in Figure 6.18(b), which shows where the localized “hotspots” are, some of 
which could have been identified by eye from the point pattern, but others 
register high because of superimposed bursts (i.e., a section of pipe has burst 
on several occasions). Some of the hotspots are spatially isolated, while oth-
ers are part of a larger pattern of generally higher burst densities. In order to 
go beyond this and calculate risk, we need “at risk” data. This always needs 
to be carefully defined as it will have important consequences for the analy-
sis. For a water reticulation network, what is it that constitutes the popula-
tion: the number of links in the network, the number of discrete segments, or 
a unit length, such as per 1,000 m of pipe? In this analysis, a per unit length 
of in-ground PVC pipe was used as the “at risk” population. The risk calcula-
tion itself was the relative risk Ri, that is, the level of incidence in relation to 
what might be expected to arise given the level of “at risk” population:

 R n
N P pi

i

i
=

( )
  (6.8)

where ni = local number of incidents, pi = local “at risk” population, N = total 
number of incidents, P = total “at risk” population, and where a value of Ri 
> 1 indicates an incident rate in excess of the expected. The risk of a pipe 
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Figure 6.18
Geo-ProZone, geographical proximity zones analysis of PVC pipe bursts: (a) point event distri-
bution with buffered convex hull, (b) point density classes, (c) risk classes.
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burst is shown in Figure 6.18(c) and differs quite markedly from the burst 
densities. The areas that had initially appeared to be the dominant clusters 
are not the highest risk areas (although they do tie up most of the call-out 
resources) because of the number of bursts in relation to the amount of pipe 
in the ground. Instead, some areas that appear to have smaller overall num-
bers of bursts have comparatively little pipe in the ground and show some 
fundamental problem with pipe in these areas.

Further analysis, not presented here, would look at pipe attributes in the 
highest risk areas to identify any dominant causes and any lessons to be 
learned. This would include issues of size and age of the pipes, winter excess 
(freezing), contractor who installed the pipes, substrate that the pipe rests on, 
and type of fracture. Alongside this last attribute might be forensic labora-
tory testing to destruction of sample lengths of pipe to understand better the 
circumstances of failure.

… and Don’t Forget the Web

In this chapter, an in-depth look at a number of case studies in GIS, environ-
mental modeling, and engineering have been presented within a framework 
that classifies the approach when GIS are one of the coupled tools. When 
GIS and environmental simulation modeling are used in tandem, there are 
issues that arise from the architecture of the coupling, data quality, model 
quality, and algorithm choice, and in decision making where there is resid-
ual uncertainty. All of these will be explored in the chapters that follow. But, 
before leaving this chapter on applications, it is worth perhaps glancing at 
the Web—that vast repository of (almost) nearly everything.

I have just entered “environmental modeling GIS” into Google and received 
366,000 hits. It sounds promising, but without going through every one of 
those hits, they appear to be predominantly books, journal papers, confer-
ences, courses, and training. Some of this is likely to be a good source of 
further application examples, but there are hardly any sites that allow real-
time environmental modeling of the type discussed in this chapter. GAM/K 
used to have a Web-based version to which files could be submitted, but it is 
available now only as a download to be run locally (http://www.ccg.leeds.
ac.uk/software/gam). But, as the Web page says, it is “an experimental pro-
gram and behaves as such.” Also available for download is PCRaster (http://
pcraster.geo.uu.nl/pcrwin32/), which as discussed in Chapter 7 has strong 
environmental modeling capability. There are, of course, a growing number 
of sites that offer online full-functionality GIS through a browser, such as at 
http://www.onlinegis.net and at http://www.emapsite.com, but these are by 
subscription and are basically to allow corporate clients to access GIS and 
data anywhere at anytime without having to have GIS software or the data 
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held locally. Then again, there are some Internet mapping sites that allow 
visualization of environmental data (as opposed to just street maps) for free. 
A U.K. example is MAGIC (http://www.magic.gov.uk). This was the first 
application in the United Kingdom to bring together all the key environ-
mental data from different government departments and agencies into a sin-
gle online interactive mapping tool. It allows selection of different layers of 
information to be viewed in relation to background topographical mapping 
right down to very local levels. It is aimed primarily at rural policy making 
and management and at best allows spatial coexistence to be visualized. A 
U.S. example can be found at http://nationalatlas.gov, which integrates all 
the relevant information in order to visualize continental-scale environmen-
tal issues. Figure 6.19 shows a landslide incidence and susceptibility map for 
the central United States from Utah in the west to Missouri in the middle 
of the country. The site aims in the future to provide global environmen-
tal information at 1:1,000,000 scale. Finally, a lumped parameter simulation 
model for use in planning reductions in transport CO2 emissions is due to be 
made available at http://www.vibat.org/vibat_ldn/tcsim.shtml. This online 
real-time simulation will allow stakeholders to make decisions about differ-
ent combinations and take up of, say, low emission vehicles, alternative fuels, 

Figure 6.19
Landslide incidence and susceptibility in the central United States—an example of online 
environmental mapping from http://nationalatlas.gov (accessed June 6, 2009).
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public transport, walking and cycling, urban planning (strategic and local 
urban design), information and communications technology (ICT) develop-
ments, driving and lower speeds, freight transport logistics and long-dis-
tance travel substitution (e.g., air to rail) in order to achieve target reduction 
in CO2 by certain dates.
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7
Issues of Coupling the Technologies

Geographical information systems (GIS) and environmental simulation 
models started to be used together around about the end of the 1980s. From 
my point of view, there was no particular application, no landmark paper 
that monuments the beginning of this fortuitous working together of the 
different technologies. It was more the case that the benefits of the idea 
independently sprung up on different types of projects in different parts of 
the world. It was, however, not inevitable that GIS and environmental mod-
eling would come together (Parks, 1993). They are rather different technolo-
gies. GIS focuses on representations of location, the spatial distribution of 
phenomena and their relationships to one another in space. These are usu-
ally static representations. Environmental simulation models, on the other 
hand, are principally concerned with system states, mass balance, and con-
servation of energy, that is, focusing on quantities (populations, chemicals, 
water) in time. While, the distribution of “actors” (Fedra, 1993) within envi-
ronmental simulation models are affected in their interactions and dynam-
ics by their spatial distribution, many of the early models of the late 1960s, 
1970s, and early 1980s did not treat the spatial dimension explicitly. If we 
treat environmental modeling in its broadest sense and include the logical 
models of land use suitability, then, yes, there has been a considerable tradi-
tion of treating space as explicit and it was these types of applications that 
propelled GIS forward in its earliest stages (see Chapter 2). Nevertheless, 
even with the advent of computer-based numerical simulation models in 
the atmospheric sciences, hydrology, biology, and ecology, the GIS link 
was not a foregone conclusion. To be sure, with the aid of GIS, hydrological 
models, for example, could more easily move from a 1D treatment of the 
drainage basin to a distributed parameter approach. GIS could be used to 
calculate gradient and aspect for a distributed model, discretize soil and 
land use coverages, interpolate sampled parameters, and thus handle spa-
tial variability explicitly. This is not to say that GIS cannot have a role in 1D 
modeling (e.g., in producing spatially averaged parameters), it is just that in 
this mode, the two technologies can, if necessary, be used quite indepen-
dently of each other and there are not nearly the same level of synergies to 
be achieved by getting GIS and environmental simulation models to work 
together. Nevertheless, in either case, it is absolutely critical to remember 
that GIS are not sources of spatial data, they are a technology for handling, 
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manipulating, and displaying the spatial data provided to them (Fedra, 
1993; Maidment, 1993b).

Some Preconditions

In changing over to environmental simulation models that make use of 
explicit descriptions of spatial variability, fundamental changes needed to 
take place that would assure GIS of their usefulness:

That distributed parameter models would give more accurate or •	
more useful results than 1D, lumped parameter models.
That it was, therefore, worth the effort and expense of rewriting and •	
testing models in distributed parameter mode.
That the necessary reinterpretation of modeling parameters •	
remained meaningful in terms of the reality being modeled.
That the necessary data could be collected.•	

From a geographer’s perspective, making spatial variation explicit would 
without hesitation lead to improved levels of explanation. But, that is not 
necessarily so from the perspective of environmental modelers. In hydrol-
ogy, for example, after a decade of debate, the jury is still out (for a balanced 
summary of the discussions, see Beven, 2001). Physically based hydrological 
process models using distributed parameters, when subjected to blind vali-
dations tests (Ewen and Parkin, 1996) have produced limited success (Parkin 
et al., 1996; Refsgaard and Knudsen, 1996). While in theory, these models 
represent an appropriate catchment modeling strategy, difficulties arise in 
their application. In particular, there is still inadequate knowledge of the 
processes at the grid scale and, therefore, some of the process descriptions 
currently in use may not be appropriate. Moreover, the effective values of 
parameters may need to be varied with grid size and the methods of esti-
mating the discretized values (e.g., by rasterization or interpolation) may be 
neither scale invariant nor provide adequate resolution to support a fully 
distributed model (Beven, 1996; Bronstert, 1999). Nevertheless, distributed 
parameter approaches are defensible on the grounds that they allow changes 
in runoff and water quality in response to subcatchment changes in land 
cover, groundwater use, irrigation, drainage, and so on, to be studied and 
predicted (Refsgaard et al., 1996). Such models allow management strategies 
to be developed, tested, and monitored in heterogeneous catchments. Efforts 
toward refining and applying such models are thus ongoing.

The change in scale, explicit in moving from 1D lumped models to dis-
tributed parameter models, has had far-reaching implications. In the early 
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1980s, when distributed parameter models began to move from being purely 
research tools toward regular professional use, computing and data collection 
technologies were at a much earlier stage and most of the current off-the-shelf 
GIS software were also at an early stage of commercialization (see Chapter 2, 
Table 2.1). Using process models that required finite element method (FEM) 
or finite difference method (FDM) approaches to the solution of distributed 
models increased the amount of computational complexity. This required a 
substantial development effort, as the model structures were completely dif-
ferent rather than an incremental change over previous models. Distributed 
parameter models took much longer to compute. Furthermore, reducing the 
size of the grid (to increase resolution) invariably led to an exponential rise 
in memory requirements and computation time. Though this has been more 
than offset these days by the operation of Moore’s Law, it was an impor-
tant consideration then. Data requirements fundamentally changed as well. 
For lumped models, parameters, input variables, and validation data could 
all be measured at points (or in small patches) that were representative of 
the larger landscape being modeled. For distributed parameter models, on 
the other hand, each cell or modeling unit (which could be grid, triangu-
lar irregular network (TIN) or irregularly shaped polygon) is assumed to be 
homogenous in its characteristics and, hence, needs its own parameter val-
ues determined for it. Rather straightforward GIS approaches to discretiza-
tion based on vector to raster or interpolation may be adequate for land use 
or rainfall (subject to the uncertainty inherent in these techniques as will be 
discussed in Chapter 8), but are questionable, say, for many soil properties 
where the amount of variability is often at a much higher resolution than can 
be captured in sample data. GIS interpolation techniques cannot be applied 
directly to environmental data that are vectors (combined speed and direc-
tion), such as the tidal current data in the coastal oil spill example given in 
Chapter 6. Furthermore, finer resolution data usually requires process mod-
els to use more parameters in their solution. Taking a simple example again 
from hydrological modeling, when modeling large catchments, the charac-
teristics of the channel network play a dominant role, while for small basins, 
the response is dominated by surface and subsurface flow on hill slopes 
(Beven, 2001), which requires the use of many more parameters to model and 
consequently more detailed field data. Problems of parameter estimation for 
an increased number of parameters for smaller units of discretization also 
serve to raise the level of uncertainty in model outputs and makes validation 
of the outputs almost as intractable. Other issues relate to the nature of GIS 
and state of spatial data technologies in the early 1980s. Vendors tended to 
offer either a raster or a vector solution. As was seen in the basin manage-
ment application in Chapter 6, the ideal for environmental modeling is the 
flexibility offered by an integrated approach to both raster and vector. In the 
late 1980s, the options were pretty much limited to Genasys II or a combina-
tion of ArcInfo and ERDAS, all on UNIX workstations. Remote sensing (RS) 
data, which together with GPS have been largely responsible for overcoming 
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the bottleneck in the availability in spatial data that existed not so long ago, 
tended to be still too coarse and presented problems in calibration for deriv-
ing quantitative data (McDonnell, 1996). Even so, the increased spatial resolu-
tion available today often increases scene noise as adjacent pixels respond to 
minor changes in ground surface properties and has not necessarily reduced 
uncertainty (Clark, 1998). Finally, the availability of digital elevation models 
(DEMs) used by GIS to prepare terrain data for environmental models were 
not nearly so readily available at that particular juncture.

Thus, in many ways, bringing together the two rather different technolo-
gies of GIS and environmental simulation modeling could have proved more 
troublesome and expensive than it was worth. Certainly in the beginning, 
consideration needed to be given as to how, in coupling the technologies, 
benefits could be derived through cross-fertilization and mutual support. 
For example:

Making spatial representation explicit in solving environmental •	
problems is indeed desirable and the way forward, but GIS lacked 
the explanatory or predictive tools (beyond logical manipulation) to 
analyze complex problems.

Environmental modeling tools of the day generally lacked any spa-•	
tial data handling and manipulation tools while GIS offered a rea-
sonably standardized menu of spatial operators (Parks, 1993) mostly 
based on coordinate geometry and algebra. This would allow mod-
elers to concentrate on modeling (Karimi and Houston, 1996).

That the needs of both technologies was complementary and that by •	
bringing them together they jointly become inherently more useful 
and robust in their solutions.

But, above all, the benefits needed to be forcibly pushed by research-
ers and practitioners in order to make them happen. In my own case, in 
Hong Kong, the arguments had to be repeatedly made and demonstrated 
to the client to be accepted (grudgingly at first, I felt) as an approach to 
environmental problem solving and which has now become common prac-
tice. Given that water moving through a landscape is highly sensitive to the 
spatial configuration and characteristics of that landscape, it is perhaps not 
surprising that hydrological and hydrogeological models were used most 
often to pioneer what became a paradigm shift for both GIS and hydrologi-
cal modeling in the early 1990s (McDonnell, 1996). Indeed, as pointed out by 
Pozo-Vázquez et al. (1997), landform and land surface characteristics influ-
ence every hydrological process, land surface interactions, air temperature, 
wind, precipitation and so on. Over the past decade and a half, the issues 
in coupling GIS with environmental simulation models and the methods 
employed have changed in response to the evolving technological environ-
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ment and our evolved thinking about what such a coupling means in the 
light of experience.

Initial Conceptualizations

In broad terms, GIS have provided environmental modelers with an ideal 
platform for spatial data integration, parameter estimation, and cartographic 
visualization, while environmental modeling has allowed GIS profession-
als to move beyond simple inventory and thematic mapping activities (Sui 
and Maggio, 1999). In practice, the degree of integration between the two 
technologies has tended to vary project by project. But, more to the point, 
what is meant by or how to specify any particular degree of “integration” is 
not so straightforward. Anselin et al. (1993) suggested a three-tiered classi-
fication based on the direction of the interaction between any two technolo-
gies: one-directional, two-directional, and dynamic two-directional (flexible 
data flow). Throughout the 1990s, however, it was generally accepted that 
for environmental simulation modeling, four levels of integration were pos-
sible using the following terminology: independent, loosely coupled, tightly 
coupled, and embedded (Fedra, 1993; Karimi and Houston, 1996; McDonnell, 
1996; Sui and Maggio, 1999), although definitions vary slightly among these 
authors. These are represented diagrammatically in Figure 7.1.
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Figure 7.1
Initial conceptualizations of the levels of integration between GIS and environmental models.
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independent

This doesn’t really represent a level of “integration” as such, but is included 
for completeness to cover those situations where GIS and environmental 
modeling are used together but independently on projects to achieve some 
common goal. In this context, GIS might be used to replace manual map 
measurements as traditionally carried out by modelers. Such measurements 
were invariably time consuming and prone to errors. Standard GIS func-
tionality for measuring distances and areas could be used instead. GIS could 
also be used in parameter estimation for lumped models where, for exam-
ple, dominant classes, spatially averaged, or interpolated values might be 
derived from relevant GIS coverage. The results from GIS usage would tend 
to be in the form of summary tables, which would then used as inputs to the 
environmental model.

loosely Coupled

At this level of integration, GIS and an environmental model can share data 
files. GIS interaction with a dynamic simulation model is likely to be more 
than a once-only set of measurements or parameter determinations, particu-
larly where the outputs of a number of scenarios may need to be visualized 
or further processed using GIS. Moreover, where parameter estimation is for 
distributed parameter models, a tabular approach to data exchange becomes 
extremely cumbersome. It is much better then to have some means by which 
both GIS and simulation models can share data files. More often than not, this 
entails exporting data files into some data format that is common to both GIS 
and environmental modeling software. This might be some formatted text 
file for attribute tables and raster matrices or, very popular at the time, the 
.dxf CAD format for vector graphics. One distinct advantage of this approach 
is that off-the-shelf and industry standard software can be used together, 
on the same computer, with a minimum of further development costs (even 
zero development costs if both have built-in compatible data import/export 
functionality). As each software becomes upgraded by the vendor, it can be 
brought into immediate use provided that a hardware or operating system 
incompatibility is not introduced in doing so (for example, the latest version 
of the GIS software might now only run under Windows XP or Vista, while 
perhaps the environmental model hasn’t been upgraded since it was first 
compiled under Windows 3.11, or more likely, the chip and memory on your 
faithful workhorse PC cannot take the upgrade; even peripherals such as an 
older plotter might no longer be supported in the software upgrade). It is 
also possible to switch software completely as a result of new developments 
because of the particular characteristics of the problem to be solved or even 
for compatibility with some third party (research colleagues, client, or other 
consultants in a consortium). On the other hand, with each software running 
through its own interface, it becomes necessary to do GIS and simulation 
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tasks one at a time in sequence, exchanging files and switching software at 
each stage.

Tightly Coupled

Under this level of integration, both software are run through a common 
interface that provides seamless access to GIS functionality and the envi-
ronmental modeling. They may even share a common file format that avoids 
the need to translate files to an exchange format, but if not, a file manage-
ment system provides seamless data sharing. There is a development cost 
in creating the common interface, but it brings about tangible advantages. 
First, off-the-shelf and industry standard software can still be used, as in 
the loosely coupled option, but avoids the need for the exchange files to be 
dealt with manually. This is important, as on large dynamic modeling proj-
ects, the number of these files can extend into hundreds, easily leading to 
mistakes in using the wrong file. This aspect plus the avoidance of alter-
nately switching from one software to another can save considerable time 
and adds flexibility in running scenarios. Incremental development of the 
common interface and file management may be required with each software 
upgrade, which may not be at the same pace or timing for GIS and the envi-
ronmental modeling. Also, if for reasons given above a different GIS package 
or environmental model needs to be substituted, the development effort has 
to be carried through again. Tight coupling in this way, therefore, tends to be 
implemented for stable situations where a large amount of work needs to be 
carried out over a period of time.

embedded

A number of authors consider that an embedded level of integration is the 
same as tightly coupled and might indeed be so if defined as such. However, 
there is considerable difference in using GIS and environmental model-
ing through a common user interface and having either GIS functionality 
embedded in an environmental model or environmental modeling code 
embedded in a GIS package. For a start, one tends to dominate through 
the use of its interface as the only one used. Also, some of the embedded 
implementations can be partial, such as limited GIS functionality inside 
an environmental model. Embedded environmental models may also be 
in a simplified form. Often such embedding is carried out by vendors to 
make their products more attractive. Environmental simulation models are 
typically developed using mainstream programming languages (e.g., C++, 
FORTRAN, Visual Basic, Java) or advanced technical languages, such as 
MATLAB, which are not ideal, but offer a pragmatic solution for environ-
mental modelers. However, a modeler would generally not want to attempt 
programming the spatial interactions and GIS functionality from scratch 
using these tools. Many GIS packages have built-in macro languages that 
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allow modeling routines to be programmed or linked and are the means by 
which a number of environmental models have been implemented. These 
macro languages, however, are considerably slower than compiled code 
with any temporary or derived data layers having to be written to hard disk 
rather than stored in memory (Stocks and Wise, 2000). Consequently envi-
ronmental modeling using these languages can be very slow in comparison 
with stand-alone models. Karssenberg and de Jong (2005a) conclude that, 
thus far, GIS have failed to become mainstream tools for the programming 
of environmental simulation models.

None of the above can be considered to be fully integrated, which would 
imply full GIS and environmental simulation modeling being developed as 
an integrated product. This would, however, be an expensive product to pur-
chase and is yet to be achieved in any significant way for an entire range of 
issues discussed in the following section.

An Over-Simplification of the Issues

The types of coupling discussed in the previous section really only represent 
technical solutions as to how GIS and an environmental simulation model 
can share the same data rather than being integrated in terms of achieving 
compatible views of the world. In other words, this type of coupling has not 
necessarily led to an improvement in the scientific foundation of either GIS 
or environmental modeling (Grayson et al., 1993) even though it is generally 
recognized that there have been tangible benefits for both GIS users and mod-
elers. The initial conceptualizations are also a rather simplistic view of the 
software/database environments that actually occur on projects with the need 
to work using spreadsheet, database, GIS software, statistical package, word 
processor, graphics package, RS image processing package, CAD, and envi-
ronmental simulation model, not necessarily all simultaneously, but certainly 
at different stages of a project. There may also be more than one of each—spe-
cialized databases for specific types of data and perhaps several simulation 
models, one for each specific process; maybe even more than one GIS software 
package. The main difficulty in moving toward a more scientifically rigorous 
approach to the integrated use of GIS and environmental simulation models 
is their differing data models (Livingstone and Raper, 1994; Bennett, 1997a; 
Hellweger and Maidment, 1999; Aspinall and Pearson, 2000; van Niel and 
Lees, 2000; Bian, 2007). As discussed in Chapter 2, data models are abstrac-
tions of reality designed to capture the important and relevant features that 
will be required to solve a particular set of problems. In the case of GIS, the 
data model focuses on creating a digital representation of geographical space, 
the objects contained therein, and their spatial relations. The emphasis is on 
location, form, dimension, and topology. Environmental simulation models, 
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on the other hand, are predominantly concerned with spatial processes, their 
states, and throughput of quantities. One is a static representation, the other 
is concerned with dynamics. This means that their data models will be quite 
different and result in database structures (for the purpose of data manipula-
tion) and databases (for the purposes of storage and retrieval) that are also 
quite different. Consider the examples given in Figure 7.2 and Figure 7.3 for 
a drainage basin. In both Figure 7.2(a) and Figure 7.2(b), the outer catchment 
boundary (watershed) and the streams within are the same, but the subdivi-
sion into subregions is quite different. Figure 7.2(a) gives the traditional geo-
graphical view of subcatchments as being the contributing area of overland 
flow to stream confluences (identified as 1 to 3). From a modeler’s perspective, 
these subcatchments may not be homogeneous hydrological response units 
nor may the confluence itself represent a typical stream reach of relatively sta-
ble known properties (e.g., cross-sectional area, wetted perimeter) with which 
to model flow or from which to collect flow data. The modeler’s view of the 
physical basin might thus resemble Figure 7.2(b). The geographical view in 
Figure 7.2(a) would perhaps result in a GIS representation of two data layers, 
one containing the streams as a network of lines and the other giving sub-
catchments as polygons (Figure 7.3(a)). The hydrologic simulation model, on 
the other hand, would require the elements of the drainage basin to be stored 
as subbasins, reaches, and junctions, as shown conceptually in Figure 7.3(b). 
In such an arrangement, the spatial dimension is only implicit with the data 
structure optimized for simulating how inputs (rainfall) are transformed into 
outputs (flow at the basin outlet) via their passage through the system.
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Views of a physical drainage basin: (a) geographical, (b) hydrological.
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Again, let us consider an ecological example. Figure 7.4(a) is a typical geo-
graphical view of vegetation mapped as succession communities. Each com-
munity is mapped with hard, nonoverlapping boundaries to make a polygon 
representation in GIS possible. While an ecologist might well be interested 
in the dynamics of the plant succession and its present state, there might not 
be recognition of distinct communities and they would rarely have abrupt 
boundaries. Instead, interest might well focus on species response to envi-
ronmental gradients as in Figure 7.4(b). Furthermore, ecological simulation 
tends to assume homogeneous landscapes in modeling population dynamics 
(e.g., the panda–bamboo interaction model of Chapter 5). Within environ-
mental simulation modeling, there is a wide range of data models because 

1 1 1 2 2 2

3

3 5

3

6 4

4

5

5

7
Sub-Basin

Reach

Node

4

Network layer Polygon layer

(a)

(b)

Figure 7.3
Contrasting data views: (a) as modeled using GIS, (b) in hydrological modeling.
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each one will need to reflect the numerical methods used to solve the par-
ticular process model(s) being simulated.

There is another important way in which the data models of GIS and many 
environmental simulators differ, and that is the way in which they view flow 
or motion. For a modeler, there are two views to choose from, the Lagrangian 
view, which is dominant in GIS, and the Eulerian view, which is dominant 
in environmental simulation models (Maidment, 1993a; Sui and Maggio, 
1999). Euler and Lagrange were both eighteenth-century mathematicians. 
A Lagrangian model of flow focuses on the object that is moving, such as 
tracking a car as it moves though the countryside. A Eulerian model of flow 
focuses on a fixed portion of space through or across which some motion 
takes place. This would be much like standing on the side of a road watching 

Woodland

Shrub

Grassland

Moisture High

Shrub

Grassland

Low
0

20

40

60

80

%
 C

ov
er

(a)

(b)

Figure 7.4
Views of vegetation: (a) geographical, (b) ecological.
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cars cross your field of view. A common analytical function in vector GIS is 
finding the shortest path (distance, time, or cost) between a starting point 
on a network and one or more destinations. Another, in raster GIS is trac-
ing flow paths across a DEM. These are very much a Lagrangian view. But 
many simulation models of physical processes (as we saw in Chapter 5) are 
concerned with states and the changes in states for a specific length, area, or 
volume of bounded space. So, for example, a model might calculate changes 
in quantity over time for a specific area consequent on the rates of ingress 
and leakage across the boundaries of that area. This is a Eulerian view. 
While tessellations and networks in GIS are suitable spatial arrangements 
of bounded space for a Eulerian view of flows, there is a marked absence 
of corresponding functionality. Of course, there are some environmental 
simulation models that employ a Lagrangian approach, but, in general, there 
remains a marked dichotomy in the way flows are modeled in GIS and envi-
ronmental simulations.

While, as we have seen, the data models between GIS and environmen-
tal simulation models and between different approaches to environmental 
simulation modeling stand apart, they are not irreconcilable. Nevertheless, 
as expressed by Livingstone and Raper (1994), making environmental mod-
els conform to the static, geometrically fixed representations of GIS for the 
sake of purely technical solutions to data sharing may well compromise 
them. Bian (2007) has discussed a similar issue arising from programming 
paradigms. Because of the need to discretize geographical space in order 
for it to be accommodated within a computing environment, and because 
of the prevailing programming paradigm of object orientation, there has 
been a growing tendency to regard all spatial phenomena as objects trans-
latable into software objects. From an environmental perspective, however, 
the two do not necessarily equate. While some spatial objects, such as point 
and polygon features, can be encapsulated as software objects, such as in 
agent-based modeling (Chapter 5), caution should be exercised when apply-
ing a computing science paradigm to spatial phenomena best represented 
as continuous fields with attributes of spatial dependency. To treat such 
phenomena as discrete objects risks changing a fundamental conceptual-
ization. In the example of flood simulation in Hong Kong given in Chapter 
6, though the coupling was loose as a consequence of having to use com-
mercially available state-of-the-art software both for GIS and the simulation 
modeling, the GIS data model for the project was largely dictated by and 
created specifically for compatibility with the data model of the hydraulic 
modeling software. In other words, a compromise was necessary, though 
GIS were largely there to serve the simulation modeling rather than the 
other way around.

Another criticism of the initial conceptualizations of technology coupling 
concerns the ability of GIS to include embedded environmental models. 
Notwithstanding the fundamental issues of divergent data models just dis-
cussed, the types of models that can be built within GIS are limited to what is 
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possible within the software’s internal analytical engine as accessed through 
the user interface (Wesseling et al., 1996; Karssenberg and de Jong, 2005a). 
The slowness of many in-built macro languages and constraints on dealing 
with intermediate states has already been mentioned. Few, if any, permit the 
type of feedback loops necessary to model dynamic systems. Also, as will 
be discussed in detail in Chapter 8, GIS are very limited in their ability to 
represent the fuzziness or imprecision inherent in most spatial data used in 
environmental modeling (Burrough and Frank, 1996). Thus representation 
of spatial phenomena in GIS are given an unnatural crispness and homo-
geneity not born out in reality and, hence, of limited use in studying trends 
and gradients (McDonnell, 1996). GIS analyses heavily rely on binary logic 
in which states become discreet (0, 1). GIS also have limited functionality in 
handling uncertainty inherent in the simulation and analysis of using spatial 
data (Burrough, 1986a; Goodchild and Gopal, 1989; Karssenberg and de Jong, 
2005b). This will also be discussed in detail in Chapter 8. Its importance here 
relates to the ability of the user to assess the uncertainty in model outputs. 
Because these outputs can be the basis for making politically sensitive deci-
sions, it is necessary to assess their reliability through uncertainty and sensi-
tivity analyses (Heuvelink, 1998; Crosetto et al., 2002; Lilburne and Tarantola, 
2009) for which vendor GIS packages have limited in-built functionality.

Other issues that need to be considered these days include the growing 
interoperability of software, such as within the Windows operating system, 
the fact that there is increasing use of network resources, and a growing 
number of geocomputational tools besides or in addition to GIS that can 
be used in environmental modeling (e.g., artificial neural network (ANN), 
agent-based models). All of the above have led to maturing conceptualiza-
tions of how GIS and environmental simulation models can be made to work 
more closely together within systems integration and geocomputational/
geosimulation paradigms.

Maturing Conceptualizations

Despite the scientific separation between the way GIS and environmental 
simulation models are constructed and used, the continuing need to estab-
lish some level of integration beyond just being used together is driven by the 
growing recognition that integrated assessments of all aspects of the physi-
cal, biotic, social, and economic environment are required if sustainable solu-
tions to problems are to be achieved (Clayton and Radcliffe, 1996; Aspinall 
and Pearson, 2000). One important change is a reconceptualization of where 
GIS and environmental simulation models stand in relation to each other 
(Clark, 1998). It should no longer be the case that one or the other represents 
the technological “heart” of the project. Rather, it should be the database or, 
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more accurately, databases that form from which GIS hubs or portals, other 
geocomputational tools, and simulation models draw input data and submit 
processed output data. Such databases are increasingly accessible across net-
works and it is networks, particularly the Internet, that has become the key 
to the integrated use of diverse tools and data sets (Figure 7.5).

integration versus interoperability

First we need to make the subtle but important distinction between integra-
tion and interoperability. As we have seen above, the act of integration was to 
bring two rather different technologies or set of tools into closer proximity 
so they can work together, even perhaps as one. This could be done through 
sharing data and interfaces. Lilburne (1996) has suggested measuring the 
level of integration between GIS and another system with respect to three 
key components: user interface, data, and functionality. Of 104 cases studied, 
higher scores tended to be achieved for the integration of interface and data, 
but that, in general, these achieved poor scores when assessed on the inte-
gration of functionality. Given the arguments of the previous section, this 
should not come as a surprise. Interoperability on the other hand is the abil-
ity of client-side software applications to access a service (e.g., some specific 
functionality) from a server-side implementation such that it will respond as 
expected (Albrecht, 1996a). This is to do with software components that are 
interchangeable so that, within a specific hardware and operating system 
environment, groups of software can seamlessly operate together. Thus, for 
example, I can call MapInfo as an ‘Insert, Object ...’ right now as I am typing 
this chapter from within Microsoft Word (Figure 7.6). The toolbar becomes 
that of MapInfo and I have within Word some GIS functionality. Thus, 
interoperability is the bringing together of software at a more structural, 
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software developmental level than is usually achieved through the integra-
tion of independently developed software.

The dominance in the marketplace of a small number of operating sys-
tems, such as Microsoft Windows and Linux, together with the current 
prevalence of object-oriented (OO) programming and a high degree of 
standardization of Internet protocols for the access and communication of 
data, have all very much eased the convergence of once separate software 
types (database, spreadsheets, statistical packages, GIS, and so on) toward 
an environment of mutual interoperability. This brings with it three impor-
tant advantages. The first is that much of the software tends to have the 
same look and feel, a shared principle of interface design using pull-down 
menus that have a common vocabulary and functionality as well as a 
familiar array of icons. For example, this icon:  almost universally means 
“open a file.” Second, data access over networks is eased as the commu-
nication protocols, data extraction, and data transformation services have 
become largely transparent to the user. Data transformation services are 
important for environmental simulation modeling where the time steps 
and spatial scale of a data set in a data repository need to be transformed 
to that expected by the simulation model to be used. Thirdly, by using OO 

Figure 7.6
An example of interoperable functionality.
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high-level languages, such as Visual Basic or Java, it is possible to construct 
programs that use selected services from one or more existing software 
and wrap them in a common user interface.

The GIS vendor community is comparatively small and in 1994 a number 
of them, together with some university research laboratories, established the 
Open GIS Consortium (now the Open Geospatial Consortium; http://www.
opengeospatial.org) as a way of fostering interoperability, so that spatial data 
and its processing could become part of mainstream computing and, thus, of 
more widespread use. The goal is for GIS to become embedded in the main 
IT (information technology) infrastructure that supports today’s information 
society. “Our vision is a world in which everyone benefits from geographical 
information and services made available across any network, application or 
platform” (OGC, 2002). GIS, as software, had been developed by each of the 
vendors with their own particular data models, data structures, and vari-
ants of the basic functionality. The further development of the industry was 
not being aided by the need to be continually transforming data (despite 
data transfer standards) and by having to understand the nuances in simi-
larly named functionality. At the same time, the overall rate at which spatial 
data were being collected by a growing number of technologies threatened 
to overload the vendors and the user community with the need to have a 
growing number of tools to transform and upload each new data type. Thus, 
an Open GIS Specification has been devised and is a framework by which 
conformant software can be written. The framework includes (Buehler and 
McKee, 1998):

A common means for digitally representing the Earth and Earth •	
phenomena, mathematically and conceptually.

A common model for implementing services for access, manage-•	
ment, manipulation, representation, and sharing of geodata between 
information communities.

A framework for using the Open Geodata Model and the Open GIS •	
Services Model to solve not only the technical noninteroperability 
problem, but also the institutional noninteroperability problem.

The environmental simulation modeling community, on the other hand, is 
much larger and more diverse (multidisciplinary, in fact) and has not come 
together in the same way that the GIS community has. That is not to say that 
simulation modelers are not adopting open systems architecture or looking 
for greater interoperability with mainstream databases, spreadsheets, and 
statistical packages, it is more of an individual choice rather than an indus-
try effort. Where does this leave GIS and environmental modeling? Both are 
working in increasingly interoperable environments with a growing com-
monality in their structural aspects. This makes deeper levels of integration 
more practicable particularly where multiple databases and models might be 
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used in a computational framework. Wrapper interfaces have become much 
easier and quicker to design. With the GIS industry adopting an open sys-
tems architecture, software has been increasingly developed using a com-
ponent-based approach. Such an approach has been facilitated by OO and 
means that instead of a monolithic software package it can be structured 
as a series of components that are independently developed, but ready-to-
use units of software. These components can be called by a core program—
usually driving the main interface—as and when needed. For that matter, 
components need not necessarily reside on the same machine, but can be 
called across a network. The component-based approach offers advantages 
when building complex systems (Bian and Hu, 2009), but it does mean that 
functionality and processes have to be capable of being decomposed down 
to primitive reusable units. GIS examples are ArcObjects from ESRI and 
MapObjects from MapInfo. Thus, using components it should be possible 
to directly incorporate selected GIS functionality that might be needed at 
particular stages of the modeling process, such as interpolation methods, 
into simulation models without having to “reinvent the wheel.” However, 
many environmental simulation models remain closed monolithic systems 
limiting their flexibility and customizability. It also needs to be recognized 
that there are many so-called legacy systems (older software) still in use. 
Where such software was expensive and time-consuming to develop, the 
benefits of going through that effort again to produce an open, interoperable 
software environment may be hard to justify. In any case, the source code 
may be many thousands of lines and may either be unavailable (to protect 
proprietary ownership), written on media no longer readable with current 
equipment, or may appear an impenetrable, convoluted mass of unfamiliar 
code to a young researcher. These software programs carry on in use and 
still present, in such cases, very traditional problems of integration.

environmental Modeling within giS

Once again we need to make the distinction between linking GIS with estab-
lished environmental simulation models and being able to carry out some 
forms of environmental modeling within GIS using cartographic process-
ing and/or map algebra-type functionality. This distinction, though still rel-
evant, has become blurred in recent years due to changes in the power of 
programming languages that are part of GIS and the advent of tools within 
GIS to assist programming efforts. The criticisms of speed and the difficulty 
of creating truly dynamic models discussed above still apply, but the effort 
to build embedded environmental models of increasing sophistication is 
ongoing. Stocks and Wise (2000) believe that the extended programming or 
scripting functionality (e.g., MapBasic in MapInfo) now available in one form 
or another for most off-the-shelf GIS packages, provide “an a priori case” for 
these tools to be used in implementing embedded environmental models. 
This is because these high-level programming languages make the input/
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output, visualization, and computation of coverage quicker and easier to 
program than would be possible from scratch using FORTRAN, C++, or Java. 
One direction this has taken researchers and vendors is to provide GIS with 
flowchart-type model design front ends (similar to that of STELLA, as illus-
trated in Chapter 5, Figure 5.17(a/b) that allow users to graphically chain 
spatial operations into environmental models run within GIS. Prototype 
examples of these are the VGIS shell described by Albrecht (1996b) and SPMS 
described by Marr et al. (1998). A criticism leveled at these prototypes by 
Crow (2000) is that they only allow static cartographic processing, although 
it was noted that there was the intention to progress toward the inclusion 
of feedback loops so necessary for realistic environmental modeling and to 
implement links as OpenGIS compliant services. A vendor approach is the 
ModelBuilder first available in the Spatial Analyst 2.0 extension for ArcView 
and now in ArcGIS. This provides a wizard by which data and “processes” 
(raster data operations) can be chained together into complex models that 
automate all aspects of an analysis including input/output, data conver-
sion (vector to raster), overlay, interpolation, and reclassification as well as 
map algebra-type operations. Figure 7.7 shows the ModelBuilder interface in 
which a very simple operation of obtaining a DEM and calculation of a slope 
map has been entered. Subsumed within this simple model of applying a 
function to data to derive a new data layer includes the specification of func-
tion parameters, applying class intervals, parameters for visualization of the 

Figure 7.7
The ArcView ModelBuilder interface.
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derived data, and its storage on disk. A more complex model for calculating 
wildfire hazard (first discussed in Chapter 5, Equation (5.2) and Figure 5.12), 
using two input data layers to derive three data layers that are numerically 
scaled (reclassified) and combined into a hazard model using weighted over-
lay, is illustrated in Figure 7.8.

The ModelBuilder, of course, is not restricted to environmental applica-
tions, but is certainly useful for static modeling of the environment within 
GIS. It is not yet a tool for building dynamic simulation models embedded 
in GIS. To date, the most successful GIS programming language for embed-
ding environmental simulation models is PCRaster (van Deursen and 
Wesseling, 1995; Wesseling et al., 1996; Burrough, 1998; http://pcraster.geo.
uu.nl/pcrwin32/). PCRaster is a scripting high-level language that allows 
either deterministic or stochastic modeling of dynamic physical processes 
over a landscape. It uses raster data and is an extension of map algebra and, 
in particular, the “cartographic modeling language” of Tomlin (1990). The 
extension functionality includes time series of changes to attributes at spe-
cific locations and the use of stacks of raster maps to represent the status 
of a model at different time steps with control on the duration of each time 
step. Illustrated in Figure 7.9 is three source layers—DEM, soils, and rainfall 
stations—that together with a time series of rainfall for each station, are used 
to calculate a series of six-hourly runoff maps (four of which are included 
here) that show the runoff increasing, reaching a maximum, and then abat-
ing in response to a rainstorm. Figure 7.9 has been compiled from PCRaster 
demo data. PCRaster has been experimentally extended by using Python in 
order to carry out dynamic modeling in 3D (Karssenberg and de Jong, 2005a). 
Thus, using a voxel structure (3D pixels), it is possible to model topographic 
(DEM) change in response to erosion and deposition over time.

Model Management

This development is one in which levels of integration between GIS and 
environmental simulation models is sought through the use of what Bennett 
(1997a; 1997b) terms “modelbase management,” that is, “a knowledge-driven 
spatial modeling framework.” This is built on the work of Armstrong (1991) 
who put forward a three-fold classification of types of stored knowledge in 
the spatial domain: geometrical, structural, and procedural, though this was 
originally in the context of cartographic generalization. Here these types of 
knowledge are given a broader GIS and environmental modeling context. 
Geometrical knowledge refers to the location, dimension, and spatial rela-
tionships (topology) of geographical features—the graphical element of a 
GIS database. Structural knowledge refers to the additional thematic (attri-
bute) information that provides for a further understanding of the form and 
characteristics of the geographical features. Procedural knowledge refers to 
the understanding we have of how physical (and social) processes operate 
over time and space as expressed in simulation models. By including any 
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Figure 7.9
An illustration of progressive runoff mapping using PCRaster: (a) DEM, (b) soils, (c) rainfall 
stations, (d) time-series rainfall data for each rainfall station, (e) to (h) runoff at time steps 
16, 18, 20, and 22, respectively. (PCRaster demo data from D. Karssenberg, E. Wesseling, P.A. 
Burrough, and W.P.A. Van Deursen, “A simplified hydrological runoff model.” Available at 
http://pcraster.geo.uu.nl/pcraster/models/catsop/index.html.)
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type of knowledge implicitly into a model, it makes that model difficult to 
modify or integrate with other models and/or technologies. By taking an 
OO approach to modeling features, say a subwatershed or a strip of coast-
line, the geometrical, structural, and procedural knowledge relevant to the 
specific object can be explicitly encapsulated into the object (see Chapter 2). 
A “menu” of such objects then can act as a database of model components 
from which geographically explicit environmental simulation models can be 
more easily created and modified.

Other research that complement these developments in the model man-
agement approach, have proposed the use of semantic models (Livingstone 
and Raper, 1994; Villa et al., 2009) and the use of various forms of artifi-
cial intelligence (AI) (e.g., Lam, 1993; Openshaw and Openshaw, 1997; Holt 
and Benwell, 1999). The fundamental differences that exist between GIS 
and environmental simulation models (as discussed earlier in this chap-
ter) could be overcome by the use of a semantic model that reconciles the 
different meanings and representations given to objects in the two tech-
nologies. The semantic model is OO and becomes part of the interface that 
acts to integrate GIS and external simulation models, thus allowing enti-
ties in a database to be used independently of a specific implementation. 
AI is the automation of the processes of reasoning and comes in a number 
of guises including knowledge-based systems (KBS), expert systems, case-
based reasoning (CBR), fuzzy reasoning, and the use of ANN. An expert sys-
tem comprised of two databases, one database containing both declarative 
knowledge about a specific domain (much like a textbook) and procedural 
knowledge on how to develop strategies, solve problems, and achieve goals. 
The other database contains the known set of facts about a specific problem 
that needs to be solved. An inference engine then uses both databases inter-
actively with the user to match the facts of the problem with the declarative 
knowledge and return both facts and procedures that will (should) result in 
a solution to the problem at hand. Lam (1993) documents the use of expert 
systems in conjunction with GIS and environmental simulation modeling. 
Fish damage in a lake can be calculated according to changes in pH level, 
but it is the calculation of pH that is problematic given the choice of using 
at least six possible combinations of simulation models depending on the 
specific characteristics of the lake. Lam used the expert system to deter-
mine the selection of the best combination of models to be used on any one 
lake. CBR is not too dissimilar except that the declarative and procedural 
knowledge are bundled or chunked as cases that are stored in a “library” 
of cases. These in one sense are historical and spatial analogs, using past 
cases to explain new situations and, hence, provide solutions or even going 
farther to critique some new solution on the basis of past cases to test its 
robustness before it is applied. Holt and Benwell (1999) use CBR as a means 
of classifying soils from basic soil survey and other landform parameters. 
Villa et al. (2009) propose moving beyond declarative modeling to semantic 
environmental modeling in which all concepts used in a model of a natural 



Issues of Coupling the Technologies 207

system are explicitly defined and embedded using ontologies (Chapter 3). 
They illustrate this concept using a predator–prey model not dissimilar to 
the STELLA model in Chapter 5. This knowledge-driven approach is likely 
to ease the path toward a more flexible component approach to building and 
integrating environmental simulation models.

Maturing Typology of Integration

Given the developments in technology and the evolution of approaches 
to coupling GIS and environmental simulation models, Brandmeyer and 
Karimi (2000) have proposed a revised hierarchical typology of integration 
(Figure 7.10). They frame their discussion around the use of “two distinct 
models” that are not framed necessarily as different data models, but as one 
or more programs operating within specialized computing environments, 
which could be GIS, database, or spreadsheet. For our present context, I 
would prefer to consider two or more distinct technologies, be these GIS, data-
bases, simulation models, etc., where commonality of underlying data mod-
els and data handling cannot be assumed.

One-Way Data Transfer

This is the lowest level of integration in which technologies are used separately, 
usually because they have been compiled in incompatible languages, have dif-
ferent data storage formats, or need to be run under different operating sys-
tems. In these cases, all that might be possible is a somewhat laborious process 
of extracting and translating data from one technology to another in only one 
direction, such as from GIS to a simulation model. A small utility program may 
need to be written in order to do this. While cumbersome and sometimes error-
prone, this is, however, a low-cost solution to using legacy software.

loose Coupling

This level of technology integration is very similar to “loosely coupled” dis-
cussed above. Here a two-way exchange of data is possible, usually in an 
automated fashion, so that the technologies can be used dynamically. Thus, 
a GIS may be used to preprocess data, which are then passed to a simula-
tion model; the results of the simulation are then passed back in turn to the 
GIS package for postprocessing as in the basin management example given 
in Chapter 6. Complementary simulation models can also be coupled in this 
way to provide a means of feedback between the models. Thus, Lofgren (1995) 
loosely coupled a general circulation model and a vegetation cover model 
with predicted climate used to determine equilibrium vegetation, the surface 
albedo of which was then used as feedback to the general circulation model.
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Shared Coupling

At this level of integration, the technologies share a major component in 
their architecture, usually either the data storage (data coupling) or the inter-
face (interface coupling). Software languages, such as Visual Basic or Java, can 
be used to construct wrappers that provide a common interface to two or 
more separate technologies, particularly so where good interoperable poten-
tial exists between them. The technologies need not necessarily be resident 
on the same computer, but might be operated over a network (such as for a 
server-side database) or even over the Internet. The user becomes unaware 
that two or more technologies are in use. Under data coupling, the technolo-
gies continue to be used separately, but both share the same data that are 
used directly from the same database. This requires that the technologies 
will be using the same or very similar data models or that their separate 
schemas can be called from the same database. Windows provides a num-
ber of methods for interoperable data sharing, such as dynamic data exchange 
(DDE), open database connectivity (ODBC), and object linking and embedding 
(OLE). Of course, using these tools does restrict the data coupling to the 
types of data that these tools support (many geospatial data types are not 
well supported).

Joined Coupling

Here, as well as the features of shared coupling (at this level both common 
user interface and common database), the separate technologies themselves 
become further integrated either because one technology is embedded in 
another (embedded coupling) or because they are integrated as peers (inte-
grated coupling). In the present context, embedded coupling usually occurs as 
simulation modeling within GIS using the built-in scripting languages. The 
integrated coupling is increasingly facilitated by interoperable services and 
initiatives, such as Open GIS, both discussed above, but to date few examples 
have emerged. Of note, however, though not incorporating GIS functional-
ity, is CHASM (combined hydrological model and slope stability model) as inte-
grated peers (Wilkinson et al., 2000), which allows the dynamic effects of 
pore-water pressure in response to specific rainfall to be incorporated into 
slope stability analyses.

Tool Coupling

This is the highest level of integration under the typology of Brandmeyer and 
Karimi. Tool coupling is really a modeling framework having integral sub-
systems accessed through a common user interface. The subsystems could 
be resident on the same computer, but could also conceivably be distrib-
uted over a network. Within the framework can be both joined and shared 
coupling within and between the subsystems. Subsystems can be specific 
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to data management, spatial data processing, model building and manage-
ment, model execution, quality management (see Chapters 8 and 9), and 
visualization. Such a framework could support a community of modelers 
working on a range of more complex and interrelated environmental issues 
rather than the narrow issues of a single discipline. A worthy goal indeed 
but accompanied by a high cost for framework design and development. Li 
et al. (2008) and Brimicombe et al. (2009) have proposed an agent-based dis-
tributed services approach to tool coupling. A software service is a piece of 
computer code that renders some form of assistance to a user in carrying 
out tasks. Obvious examples are procedural wizards that assist in setting up 
a new database, importing/exporting data, customizing views, etc. Agent 
technologies as multiagent systems can also be deployed to provide ser-
vices in the spatial domain. Such agent-based services are an enhancement 
of procedural services in that they can have autonomous behavior, network 
mobility, goal-directed behavior, and work collaboratively to solve and carry 
out tasks. In the spatial domain, agent-based services have been primarily 
deployed in data integration and management over a network (e.g., Tsou 
and Buttenfield, 2002; Sengupta and Bennett, 2007). Brimicombe et al. (2009) 
demonstrate how agents can be used to find and assemble distributed com-
ponents over a network in order to carry out specific modeling tasks, and if 
necessary to migrate tasks across a network should additional computing 
resources be required. Agent technologies are particularly suited to achiev-
ing interoperability in heterogeneous computational environments and in 
tool coupling GIS and numerical simulation models.

De facto Practices

In Chapter 3, we discussed an evolutionary model of operational GIS that 
moved from inventory activities in the early stages through analysis and on 
to management in the final stage (Crain and Macdonald, 1984). If the ten-
dency is toward the use of GIS for (or with) modeling and simulation in a 
decision support system environment (Chapter 10), then the coupling of GIS 
with environmental simulation models becomes integral to that evolution. 
We are, however, not yet at the end of that particular road. There is a lot of 
research and experimentation taking place with shared, joined, and tool cou-
pling that have some way to go before stable, tool coupled products appear in 
the market. In the meantime, current de facto practice is focused on using GIS 
and environmental simulation models as loose or shared couplings where 
the technologies remain distinct. In general, notwithstanding environmen-
tal modeling within GIS, the role of GIS to environmental simulation model-
ing has been (Goodchild, 1993; Clark, 1998):
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Preprocessing of spatial data to prepare them as inputs to simulation •	
models. This can involve the integration of different data sets, trans-
formations, such as vector to raster, buffering, or the creation of new 
layers through overlay, Boolean selection, or map algebra.
Assisting in modeling tasks, such as calibration and scenario •	
building.
Postprocessing the outputs of the simulation for visualization and •	
possible further analysis using cartographic processing or map alge-
bra, e.g., to ascertain impacts on settlements, land uses, and so on.

While the role of GIS is not limited to these three functions, it forms 
the predominant mode of employment. The key issue of how the coupled 
technologies perform as spatial decision support system (SDSS) is left for 
Chapter 10.
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8
Data and Information Quality Issues

Let us start off with a small thought experiment. To begin with, we should 
recognize that it is highly unlikely that any data set is 100% accurate. Then, 
suppose in the example landscape we have been using in previous chapters 
(e.g., Chapter 2, Figure 2.5), each layer is 90% (0.9) accurate. If we were to 
combine in an overlay of the geology and the land cover, we would end up 
with a map that is [0.9 and 0.9] accurate, which in probability terms would 
be 0.9 × 0.9 = 0.81, or 81% correct. Add another layer to the overlay and the 
result might theoretically be only 73% correct, and by the time we have used 
seven different layers in the analysis, our output product might be less than 
50% correct. What then if this final map was used as input data for an envi-
ronmental simulation? Of course, things are unlikely to be quite this bad in 
practice and, besides, plenty of errors (often unnoticed) were made in using 
traditional paper maps. Nevertheless, a good understanding of data quality 
issues is a key to informed use of geographical information systems (GIS) and 
environmental modeling. This chapter will tend to focus on issues of spatial 
data quality as these pose special problems in addition to those encountered 
in nonspatial data. As we saw in Chapter 3, spatial data quality is a funda-
mental concern of geo-information (GI) science. While considerable research 
is ongoing in this area, there is already a sizeable literature. For greater detail 
than provided here, the reader can refer to: Goodchild and Gopal (1989), 
Burrough and Frank (1996), Burrough and McDonell (1998), Shi et al. (2002), 
and Brown and Heuvelink (2008) for GIS perspectives; Heuvelink (1998) for 
an in-depth GIS and environmental modeling perspective; Li et al. (2000) for 
a process model perspective; Elith et al. (2002), McIntosh (2003), and Lowry 
et al. (2008) for an ecological perspective.

The Issue Is … Uncertainty

A universal concern with all information systems must be the quality of 
the data contained within them, hence, the well-known adage of the com-
puter age: garbage in, garbage out. Nevertheless, it should be recognized 
that “errors and uncertainty are facts of life in all information systems” 
(Openshaw, 1989). The process of describing aspects of reality as a file struc-
ture on storage media requires a high level of abstraction, as was illustrated 
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in Chapter 2. Thus, any attempt to completely represent reality in GIS, while 
no doubt resulting in robust and flexible data sets, would also result in large, 
complex, and costly data sets that would require a higher order of technol-
ogy to handle them. Historically, a detailed consideration of data quality 
issues in GIS lagged considerably behind the mainstream of GIS develop-
ment and application. This is evident from the growth of the relevant lit-
erature, which underscores a sudden vogue in spatial data quality research 
from 1987 onward, some 25 years after the introduction of GIS (Figure 8.1). 
This lag in concern for spatial data quality may be attributed to:

The inherent trust most users have in computer output, particularly •	
after some complex analysis.

The possible lack of awareness among operators and managers from •	
nonspatial disciplines of the sources of uncertainty in spatial data 
sets and the consequences of propagating them through analyses, 
other than the need to correct blunders.

The growing desire in the late 1980s for remote sensing (RS) and GIS •	
data integration, there having been already a body of research on 
accuracy assessment of RS data.

The growth of GIS through stages of inventory, analysis, and man-•	
agement (Crain and Macdonald, 1984) such that a need to consider the 
consequences of uncertainty in outcomes on decision making may 
only become apparent after some years of system development.

Data are usually collected within a specific context and the design for any 
primary data collection is usually specified within that context. Surveyor 
and user may be the same individual, part of the same team or linked by con-
tract. Thus, the chances for misinterpretation of outcomes or misconceptions 
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A graph showing the rise of interest in data quality issues within the GIS literature.
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concerning accuracy of the data should, in theory, be quite small. But, data 
are likely to have a life span (shelf life) well beyond the original context and 
may well be used as secondary data on other projects. Those who collected 
the data may be unaware of subsequent uses (or misuses) to which their data 
are put. Most of the early literature on GIS data quality was concerned with 
the accuracy of data sets, or more specifically, the recognition and avoidance 
of error. We will be taking a wider view of this issue by considering the level 
of uncertainty that exists in the use of spatial data and the fitness-for-use of 
GIS outputs.

Error is the deviation of observations and computations from the truth or 
what is perceived as the truth. This assumes that an objective truth can be 
known and measured. Statistically, errors may be identified as gross (outli-
ers, blunders), systematic (uniform shift, bias), or random (normally distrib-
uted about the true value). Accuracy, the logical dual of error, is the degree of 
conformance of our observations and computations with that truth. Precision 
is the level of consistent detail with which observations can be made (often 
synonymous with the number of decimal places being used, though this can 
be misleading as large numbers of decimal places can be spurious). Imagine 
throwing darts at a dart board—getting a dart in the exact center is being 
accurate, getting all the darts on the board close together is high precision 
even though they may be nowhere near the center. As regards the quality of 
GIS products, however, it is necessary to make a clear distinction between 
the usefulness of data inputs and of analytical outputs. Reliability concerns 
the trust or confidence given to a set of input data on the basis of available 
metadata (data about the data: its lineage, consistency, completeness, and pur-
ported accuracy) and upon inspection of the data by the user. It refers to the 
assessed quality of the data on receipt. The user can then judge its appropri-
ateness for use in a particular context. Fitness-for-use, however, refers to the 
assessed quality of the products of analyses used in decision making. Such 
evaluations and judgments must necessarily be the responsibility of the user 
(Chrisman, 1982). Where only a single theme is used, then fitness-for-use can 
be judged directly from the data’s reliability. However, where data sets are 
integrated and themes are combined or transformed, then the analytical out-
puts are characterized by combination and propagation of the data reliabili-
ties of the individual themes. In as much as research has focused on quality 
measures for data reliability, progress in the derivation of quality measures, 
meaningful in the evaluation of fitness-for-use, has been slower.

Uncertainty in its broadest sense can be used as a global term to encom-
pass any facet of the data, its collection, its storage, its manipulation, or its 
presentation as information that may raise concern, doubt, or skepticism in 
the mind of the user as to the nature or validity of the results or intended 
message. Theoretically, this definition would also include mishandling of 
the data through improper analysis, inappropriate or erroneous use of GIS 
functions, poor cartographic technique, and so on. Thus, in the context of 
environmental modeling, Burrough et al. (1996) consider the quality of GIS 
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informational output to be a function of both model quality and data quality. 
Modeling issues will be discussed separately in Chapter 9. The term uncer-
tainty, therefore, will be used to refer to the inevitable inaccuracies, inexact-
ness, or inadequacies that exist in most spatial data sets and their resultant 
propagation through analyses to adversely affect the usefulness of results 
and certainty in decision making. Four broad categories of uncertainty are 
given in Figure 8.2. Intrinsic and inherited uncertainties are those associated 
with primary and secondary methods of data collection (Thapa and Burtch, 
1990), respectively. Secondary data (e.g., existing maps) will also have an ele-
ment of intrinsic uncertainty. Once the data are used within GIS, intrinsic 
and inherited uncertainty will be propagated and additional uncertainty 
may be derived due to the nature of hardware and software. This is opera-
tional uncertainty. The resulting levels of uncertainty, if not quantified or in 
some way known, may lead to overconfident, uncertain, or erroneous deci-
sion making. Uncertainty or error in use may also derive from different per-
ceptions or misinterpretation of the output information on the part of the 
user (Beard, 1989).

To say that GIS users were somewhat tardy in recognizing data quality as 
an issue is not to imply that data quality was altogether neglected. Geodetic, 
cadastral, and topographic surveying, as sources of GIS data, have a long 
tradition of assessing the accuracy of their numerical and graphic prod-
ucts. Cartographers, too, have long striven to reduce error to tolerable levels, 
though the task is somewhat less tangible because they must also address 
the effectiveness of their maps in the communication process (Muller, 1987). 
In RS, the appropriate methods for assessing the accuracy of classified imag-
ery were subject to debate from the mid-1970s onwards (see, for example, 
Hord and Brooner, 1976; Turk, 1979; Congalton and Mead, 1983; Story and 
Congalton, 1986). Initially, this debate was separate from GIS, but came 
together in the early 1990s with the move toward integrating RS and GIS 
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Main sources of uncertainty within spatial data.



Data and Information Quality Issues 217

data (Lunetta et al., 1991). Nevertheless, despite the progress made, in practi-
cal terms it remains an issue today in that many users do not routinely assess 
the uncertainty of their data and of their analytical results.

Early Warnings

MacDougall (1975), writing in the context of paper maps, provided an early 
warning of what to expect from cartographic processing in GIS: “It is quite 
possible that map overlays by their very nature are so inaccurate as to be use-
less and perhaps misleading for planning.” The concern was that maps, while 
having individually adequate planimetric accuracy and “purity,” may when 
combined produce a seriously degraded product. Chrisman (1987), how-
ever, considered MacDougall’s analysis to be ”dangerously oversimplified.” 
Another early concern lay with the nature of the data themselves. Most GIS 
are reductionist and support parametric forms of enquiry, which force data 
into well-defined categories even though in reality they may lie along a con-
tinuum (e.g., mutually exclusive land use classes or soil types). Boundaries 
(within and between layers) can be unintentionally misleading in that they 
imply both spatial homogeneity within a polygon and equal homogeneity 
for all areas of the same class (Robinove, 1981). Even though methods of clas-
sification, categorization, and boundary definition may be known for each 
layer, their effects on the validity of results due to combination may be very 
difficult to assess with scope for misinterpretation of the results.

Many of these problems already existed in paper thematic maps. Thus, ”the 
essence of mapping is to delineate areas that are homogeneous or accept-
ably heterogeneous for the intended purpose of the map” (Varnes, 1974). This 
again leads to a reductionist process of defining a hierarchical structure of 
classes, assigning each individual to a class, and placement of the classified 
individual in its correct position (Robinove, 1981). However, “the objective 
is not to accurately represent the real world, but rather to show a simpli-
fied model of reality, an abstraction which helps separate the relevant mes-
sage from the unwanted details” (Muller, 1987). Not only will such maps 
contain factual information, but may also include hypothesis and synthesis. 
Deviations from reality are intentional and controlled and can be achieved 
through appropriate use of symbolization and scale so as not to compromise 
the authority of the product. Though there are no accuracy standards for 
thematic maps, they are less open to user abuse (though not immune) in 
paper form due to the symbolization and scale being fixed. Fixed scale also 
applies to paper topographic maps and accuracy tests are scale dependent 
(see below). Transferred to a digital environment certain safeguards inher-
ent in paper maps, such as the fixed scale, were removed, though traditional 
attitudes toward spatial data persisted: If it wasn’t a problem in the past, 
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so why is it now (Openshaw, 1989)? There is also evidence that many users 
poorly understood the accuracy of paper maps, often attributing them with 
higher levels of accuracy than warranted. “Data for which no record of its 
precision and reliability exists should be suspect” (Sinton, 1978). While there 
were accuracy standards developed for primary data collection, in second-
ary data collation (e.g., digitizing of existing maps) the assumption seems 
to have been that since the source documents were originally compiled to 
the prevailing standards (or were somehow authoritative), they could also 
be converted to GIS and used without problem. The ability to change scale 
in the digital environment and combine data sources at will was viewed 
only as a positive advantage. There appears to have been little regard for, or 
understanding of, the cumulative effects of these data combinations on the 
quality of the informational outputs.

Three widely reported studies seemed to clinch it for the GIS community. 
Blakemore (1984) tested an actual database of employment office areas and 
manufacturing establishments for which it was necessary to identify which 
manufacturer (a point) fell within which employment office area (a polygon); 
in other words, a standard point in a polygon test. By making basic assump-
tions regarding data input accuracy for both the points and the digitized 
polygon boundaries (ε or epsilon band, as illustrated in Figure 8.3), Blakemore 
found that only 55% of points could be unambiguously assigned. Newcomer 
and Szajgin (1984) tested error accumulation as probabilities when combin-
ing raster data layers. Their conclusion was similar to that of MacDougall 
(1975): a general rule of thumb that the result of an analysis would generally 
be less accurate than the least accurate layer used. Then Walsh et al. (1987) 
extended Newcomer and Szajgin’s analysis by using typical data sets for that 
time. By using more than two layers and by varying cell size, they found that 
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ε accuracy band for a digitized boundary and resulting uncertainty in a point in a polygon test. 
(Based on Blakemore, M. (1984) Cartographica 21: 131–139.)
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errors inherent in the data and additional errors introduced through com-
bining layers led to a sufficient total error to render composite maps highly 
inaccurate. For two-layer combinations, the highest accuracy was 29% and 
the lowest 11%, while for three layer combinations, the accuracy ranged from 
11% to just 6%. Though the situation today with higher resolution and more 
accurate spatial data is unlikely to result in such poor analytical products, 
such studies were nevertheless a very clear indication of the potential seri-
ousness of the problem.

So, How Come … ?

To begin with, no observation of geographical, environmental, or social phe-
nomena is perfect. There are a number of quite valid reasons for this that can 
be classified as follows:

Imperfect measurement.•	
Digital representation of phenomena.•	
Natural variation.•	
Subjective judgment and context.•	
Semantic confusion.•	

imperfect Measurement

Equipment used for measurement, whether it be the time-honored tape mea-
sure, weighing scales, or advanced uses of the laser beam, all have their design 
accuracy and level of precision, some equipment requiring calibration before 
use. Most equipment, if used for repeated observations of the same static 
object or phenomenon, will result in a cluster of measurements normally 
distributed around the true value and spread in relation to the equipment’s 
precision. There is a tendency for this to be compounded by errors or bias in 
recording measurements. A gross error or blunder, such as putting the deci-
mal point in the wrong place or writing too many zeros, should be noticeable 
as an extreme value or outlier when all the measurements are graphically 
plotted, such as by using box plots. Bias often occurs through unintentional 
rounding of the observations, say upward to the nearest 0.5 or to the near-
est integer. Bias can occur if equipment is poorly calibrated or is adversely 
affected by temperature and/or humidity resulting in a shift in the readings. 
Bias can result through the use of an inappropriate sampling scheme for the 
phenomenon being measured. Harvey (1973) and Hirzel and Guisan (2002) 
constructively summarize sampling issues. Bias in measurements can also 
result from temporal and spatial autocorrelation (Goodchild, 1986; Griffith, 
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1987) in which there is a tendency for spatially or temporally neighboring 
observations to have either a markedly greater (positive autocorrelation) or 
markedly lesser (negative autocorrelation) similarity that might be expected 
from a purely random association of such observations. This arises out of 
the issue of spatial dependence discussed in Chapter 4 in relation to mod-
eling topographic surfaces. These biases tend to result in systematic errors 
that are more difficult to detect and correct, but which, as we will see later, 
can compound during analyses and raise the level of uncertainty. It is also 
worth mentioning here the ‘small number’ problem. This often crops up, for 
example, in population dynamics when working with proportional data. A 
population of two that increases by two has increased by 100%, whereas an 
increase of two in a population of 100 increases by only 2%. Though not a 
measurement error, this is a measurement scale effect of working with small 
numbers where proportional increases can appear disproportionately large, 
but nevertheless result in biased analyses.

Digital representation of Phenomena

In Chapter 2, we saw how the digital representation of reality was driven 
by the data model, which is then translated into a data structure and finally 
into a file structure. In GIS, we have basically two ways of representing spa-
tial data: raster or vector. In the raster approach, accuracy is going to be 
limited by cell size, and while the concept of accuracy is essentially inde-
pendent of the issue of resolution, cell size will limit the minimum error 
that can be measured (Chrisman, 1991). In vector, points that subtend lines 
will be recorded with high precision regardless of rounding at the time of 
measurement. Thus, a line ending at a point with x coordinate measured 
as 12.3 rounded to the nearest 0.1 nevertheless may be stored implicitly as 
12.300000 and would be considered as not joining to another line ending at 
12.300001, though this would not be warranted within the initial precision 
of measurement. When lines are snapped to form polygons, the software 
forces the point of snap to be exactly the same number for both lines to the 
nth decimal place. However, different hardware may handle floating-point 
arithmetic differently, so, for example, I have found in moving data sets 
from an IBM server to a Sun server and vice versa (both using the same 
GIS software in a UNIX operating system) that some polygons no longer 
snap—it’s the nth decimal place. The same goes for attribute data. Whether 
vector or raster is used, space needs to be partitioned into discrete chunks in 
order to be handled digitally. A cell or a polygon needs defined boundaries 
whether implicit or explicit. Each cell or polygon is homogeneously defined 
as belonging to a particular class leading to abrupt change from one class 
to another at the boundaries. This reflects the reductionist nature of GIS 
already mentioned above where there is a tendency to reduce the complex-
ity of the real world to discrete spaces characterized by a number of discrete 
classes. Another effect of digital representation is that you can zoom in, and 
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zoom in yet farther and all the lines remain pixel-thin implying a high level 
of accuracy that is again not warranted. I call this the “infinite zoom” prob-
lem. This leads users to believe that they can overlay data surveyed at, say, 
1:1000 scale with data surveyed at 1:100,000 scale, whereas they would never 
attempt to do this with paper maps.

Natural Variation

Natural variation exists in our landscapes because of the complexity of the 
systems at work and the multiplicity of causal factors that operate. These 
causal factors vary both singly and in combination along environmental gra-
dients. They are also reinforced or dampened by internal feedback loops. 
Temporal variability exists due to fluctuations in the external environment. 
Our tendency is to handle such complexity through inductive generaliza-
tion into discrete, mutually exclusive, homogeneous classes (the dominant 
GIS mode of data modeling discussed above), but we are merely creating an 
interpretation of reality. Just as models are simplifications of reality, so too 
are our mapped representations. Hence, Burrough’s (1986a) statement that 
“many soil scientists and geographers know from field experience that care-
fully drawn boundaries and contour lines on maps are elegant misrepresen-
tations of changes that are often gradual, vague, or fuzzy.” It is our intuitive 
need to distinguish boundaries within continua that lead to many spatial 
data problems (see Figure 8.4).

Woodland

? ? ? ? ?

Shrub Grassland

Figure 8.4
Problems of interpreting natural variation into discrete classes.
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Suppose we had decided to map vegetation in three classes: woodland, 
shrub, and grassland. In the upper part of Figure 8.4, our job is easy; there 
are homogeneous groups of the three vegetation types to which we can affix 
boundaries with reasonable certainty. In my 30 years of mapping vegeta-
tion, such “convenient” natural landscapes are infrequent. Most of the time 
it looks like the lower part of Figure 8.4, but the mapping task still needs 
to be done. We could introduce more classes, such as “shrub with trees” 
and “shrub with grass,” and all the other possible combinations that exist. 
However, this adds a level of complexity that doesn’t necessarily ease our 
problem because how many trees do we need before we abruptly change 
from “shrub” to “shrub with trees”? Our maps may end up with a myriad 
small polygons that make analysis orders of magnitude more difficult. Some 
would say it’s a matter of scale, you just need a finer resolution. I defy any-
body to out and unambiguously peg on the ground the boundary to some 
woodland: Do you take the tree trunks, the extent of the crown, what about 
the roots? No, more often than not we just have to deal with it and interpret 
some boundaries. This then leads to series of polygons that users then inter-
pret as homogeneous woodland, shrub, and grassland when in reality there 
is a degree of heterogeneity. Figure 8.5 gives a contingency table of uncer-
tainties that can arise consequent on our treatment of natural variation. 
As Bouille (1982) states: “Most of the phenomena that we deal with … are 
imperfectly organized, incompletely structured, not exactly accurate, etc. 
In a word, the phenomena are ‘fuzzy.’ However, we must not reject fuzzy 
data, we must not transform them into more exact data; we must keep them 
as fuzzy data and process them as fuzzy information by fuzzy operators 
producing fuzzy results.” We will return to the issue of fuzziness later in 
this chapter.

Characterization of Spatial Entity
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Figure 8.5
Shown is a contingency table of uncertainties arising from boundary definition and charac-
terization of spatial objects. These uncertainties may change with time and contextual resolu-
tion. (Modified from Robinson, V.B., and Frank, A.U. (1985) Proceedings from the AutoCarto 7, 
Washington, D.C., pp. 440—449.)
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Subjective Judgment and Context

We have already touched on this in looking at natural variation. While some 
methods of data collection may appear highly objective (e.g., laboratory mea-
surement of soil pH values from field sampling), the interpretation of what 
these results mean is often a matter of judgment. Other forms of data collec-
tion are often highly subjective and dependent upon expert knowledge. Let 
us take aerial photographic interpretation (API) as an example. A lot of spatial 
data is collected in this way. A number of authors have studied the consistency 
and correctness of API. Congalton and Mead (1983) tested five interpreters on 
classes of tree cover. Although the results differed, they were found to be not 
significantly different at the 95% confidence level. Yet Drummond (1987), on 
a more varied test of nine land use classes carried out by five experienced, 
midcareer professionals, found that the superimposed results had consider-
able variability. Where contrasting land uses were juxtaposed (e.g., an area of 
agriculture in a woodland clearing), boundary conformity was high. Villages, 
on the other hand, which in this area tend to have diffuse boundaries as well 
as classes, such as “fallow bush” (which can easily be confused with other 
cover types), tended to have low boundary conformity. Fookes et al. (1991) 
were able to qualitatively compare eight interpretations carried for the Ok Ma 
dam site, Papua, New Guinea, where a 35-million m3 landslide occurred as a 
result of construction work. The interpretations, which required a high level 
of skill, were very different both in style of presentation and in their conclu-
sions. Fookes et al. went on to note that the more correct and informative 
conclusions were based on interpretations that deduced the active processes 
rather than relying solely on the recognition of individual features. Carrara et 
al. (1992) found some 50% discrepancy between interpretations of individual 
landslide features mostly due to uncertainty in mapping old, inactive land-
slide bodies. However, once the individual features were extrapolated over 
landform units, the results were felt to be acceptable (83%) despite loss of reso-
lution. One could conclude from these studies that when you ask n experts, 
you’ll get n somewhat different opinions, but that if you combine these opin-
ions you may well have a model of uncertainty from which to work. Finding 
n experts is not always feasible, is likely to be time consuming, and, above all, 
an expensive way to collect data. This leads us to consider the contexts within 
which such experts work.

GIS and environmental modeling can be both a research and a professional 
activity. It is, however, predominantly an applied activity often with the ana-
lyst working in a consultant–client relationship, which has important ramifi-
cations. Whereas a researcher’s primary concern is with understanding, the 
goal of a consultant is action on his or her recommendations. To achieve this 
goal, the consultant should exercise judgment, based on experience and intu-
ition, and focus predominantly on the principal variables that are under the 
client’s control (Block, 1981). Blockley and Henderson (1980) consider the major 
dissimilarity between science and, say, engineering to be in the consequences 
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of incorrect prediction. Whereas the scientist is concerned with precision, 
objectivity, and truth, and attempts to falsify conjectures as best he or she 
can; for the engineer, falsification of conjectures and decisions means fail-
ure, which must be avoided. The engineer strives to produce an artifact (road, 
dam, bridge) of quality (safe, economic, aesthetic) and, therefore, is “primar-
ily interested in dependable information … is interested in accuracy only to 
the extent that it is necessary to solve the problem effectively” (Blockley and 
Robinson, 1983; see also Frank, 2008). Thus, context (science versus engineer-
ing) has important pragmatic quality implications with regard to the collec-
tion and use of data in GIS and environmental modeling.

Semantic Confusion

Salgé (1995) defines semantic accuracy as the “pertinence of the meaning of 
the geographical object” as separate from its geometrical representation. The 
exact meaning of common words used to characterize classes of objects is a 
frequent problem in database integration. Let me provide a real example. In 
Chapter 6, we looked at a basin management planning project in Hong Kong. 
As part of this project, I mapped the land cover over large areas of the territory 
and one of the classes was “village.” The definition of “village” here was a 
cluster of predominantly residential buildings within a rural environment and 
was constructed as a separate class to differentiate the runoff characteristics 
from those of the surrounding fields. The Planning Department, on hearing 
that villages had been mapped digitally approached me to explore acquisition 
of the mapping. However, I was aware that their definition of “village” was 
quite different and referred to traditional settlements (as opposed to more 
recent informal settlements) with the boundary extending 100 m beyond the 
outer buildings of the settlement. This is not what had been mapped and there 
was considerable scope for confusion, inadvertent misuse of the data, and 
eventual dissatisfaction with the data provider. Fortunately, this situation was 
avoided, but it is very easy to occur where commonly used words can have 
ambiguity and where precise definitions of feature classes are not available.

Finding a Way Forward

Following on from the above discussion, we can now flesh out Figure 8.2 with 
much more detail (though by no means exhaustive) on the specific causes of the 
four main types of uncertainty (Figure 8.6). This covers all aspects of primary 
data collection, deployment of secondary data, processing by hardware and 
software, and the final use of the analytical products. It’s a veritable minefield.

The concept of fitness-for-use has already been mentioned. The data qual-
ity debate has been too narrowly focused on error in data rather than the 
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wider consideration of uncertainty. Certainly information on data quality 
“provides the basis to assess the fitness of the spatial data for a given pur-
pose” (Chrisman, 1983a); however, this is closer to our definition of the reli-
ability of data inputs. For the products of analysis, the user needs to evaluate, 
within the specific context, how the initial reliability translates into fitness-
for-use depending on the propagation of uncertainty (its accentuation or 
dampening) for the methods of analysis (or simulation) used. Thus, fitness-
for-use is not a fixed attribute of analytical products, but is context specific. 
So, for example, data errors in a site analysis carried out to identify suitability 
for growing potatoes may not detract from the usefulness of the analytical 
products for making decisions. The same data sets used in the same way, but 
this time as part of a site suitability analysis for the disposal of toxic wastes, 
may be deemed unfit for use because of the risks associated with the level 
of resulting uncertainty. This would imply a need to pay attention, through 
a managed process, to data reliability, modeling the propagation of uncer-
tainty and where necessary taking action to reduce the levels of uncertainty. 
This is embodied in Veregin’s (1989a) “hierarchy of needs” illustrated in 
Figure 8.7. The first step—source identification—we have already explored 
in the paragraphs above culmination in Figure 8.6. The following sections 
will progressively move up the hierarchy.

Measuring Spatial Data Quality

The general treatment of uncertainty in spatial data reflects the continuing 
conceptual closeness of digital maps to their paper roots in the minds of 
users with an overriding emphasis on accuracy and error. Thus, adopted 
wholesale from the mapping sciences has been the testing of geometrical 
accuracy based on well-defined points having no attribute ambiguity (Bureau of 

Strategies for Management

Propagation Modeling

Detection and Measurement

Source Identification

Figure 8.7
A hierarchy of needs for managing uncertainty in using spatial data. (Adapted from Veregin, 
H. (1989a) in The accuracy of spatial databases, ed. M.F. Goodchild and S. Gopal. Taylor & Francis, 
London.)
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Budget, 1947; American Society of Civil Engineers, 1983; American Society 
of Photogrammetry and Remote Sensing, 1985). These are usually stated 
in the general form: “90% of all points tested shall be correct within X 
mm at map scale.” In some countries, such as Australia, the law—Survey 
Co-ordination Regulations, 1981—allows plans to be classified from AA 
through DD according to a range of permissible plotted positional errors 
(reported by Millsom, 1991). Testing is supposed to be carried out by ref-
erence to a survey of higher order and is usually reported as a root mean 
square error (RMSE) for x and y dimensions (which we have already used 
in Chapter 4):

 RMSE
e

n

i
i

n

= =
∑ 2

1  (8.1)

where e = the residual errors (observed – expected), n = the number of observa-
tions. Vertical accuracy is generally treated in the same way with separate 
statements in the general form: “90% of all interpolated elevations must fall 
within one half of a specified number of contour intervals.” Thus, it is also 
possible to classify vertical accuracy over a range by increasing the number 
of contour intervals (e.g., one, one and a half, two contour intervals). Whereas 
the accuracy testing described thus far is predicated on point samples, an 
alternative measure of map accuracy using line intersect sampling is given 
by Skidmore and Turner (1992). The sampling is used to estimate the length of 
boundaries on a map that coincide with the true boundaries on the ground. 
The results can be converted into a percentage accuracy statement for the 
map. An example of map accuracy for U.K. Ordnance Survey topographic 
maps is given in Table 8.1. Attributes tend to be treated separately from loca-
tion geometry. Appropriate testing of attribute accuracy depends on the 
measurement class used. Continuous data, such as digital elevation model 
(DEM), can be tested for horizontal and vertical accuracy as with most point 
sampling described above either through interpolating contours or interpo-
lating to known points. An alternative is statistical analysis of expected and 
observed values. A number of case studies are reviewed by Shearer (1990). 

Table 8.1

Absolute Geometric Accuracy of Ordnance Survey 
Topographic Maps

Scale RMSE 95% Confidence 99% Confidence

1:1,250 < 0.5m < 0.8m < 1.0m
1:2,500 < 1.1m < 1.9m < 2.4m
1:10,000 < 4.1m < 7.1m < 8.8m

Source: www.ordnancesurvey.co.uk
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Other quality issues for DEM are the nature and quality of source docu-
ments (if digitized), the sampling interval and orientation (if on a grid) in 
relation to the configuration of the terrain, and the intended use of the data. 
Where attributes are recorded on nominal scales or in discrete classes, the 
use of classification error matrices is widely used. Such techniques are of 
particular importance in testing the classification of RS imagery according 
to spectral response. A number of indices can be derived to summarize the 
matrix, such as proportion correctly classified (PCC), the Kappa statistic, and GT 
index (Turk, 1979; Congalton and Mead, 1983; Rosenfield, 1986; Hudson and 
Ramm, 1987).

Debate has not only centered around the appropriate derivation of indices, 
but also on whether these should reflect accuracy from the producer’s or 
user’s point of view (Story and Congalton, 1986), as illustrated in Figure 8.8. 
Testing is usually carried out on point samples using a suitable sampling 
scheme. Difficulties arise because classification schemes rarely have the nec-
essary mutual exclusivity to avoid ambiguity, boundaries are often avoided 
(as in soil sampling), and the position of the sampling point must be cor-
rectly located on the ground. Middelkoop (1990) puts forward an alternative 
approach whereby a confusion matrix, generated by having several experts 
carry out interpretation of the same test area, is used to study boundary 
uncertainty. Gopal and Woodcock (1994) also use expert opinion to gen-
erate a matrix to assess thematic map accuracy. An increasing number of 
studies have utilized fuzzy measures and fuzzy logic in the interpretation 
of RS imagery as a means of better reflecting natural variation (techniques 
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summarized in van Gaans and Burrough, 1993). Fuzzy measures are also 
used to reflect the quality of the product, a topic discussed further below.

Data conversion from analog to digital format is likely to introduce an 
element of error due to inaccurate placement of the digitizer cursor (Keefer 
et al., 1988) and due to simplification arising from point sampling of linear 
features (Amrhein and Griffith, 1991). Tests of human performance using 
digitizer pucks would indicate accuracies of 0.25 mm at map scale or half 
of this if a magnifier is used (Rosenberg and Martin, 1988). Trials reported 
by Maffini et al. (1989) showed that 90% of discrete entities digitized from 
1:50,000 scale maps fell within 0.4 mm. An elaborate experiment by Bolstad et 
al. (1990) determined that 90% of well-defined points digitized from 1:24,000 
scale maps fell within 0.5 mm and, thereby, met map accuracy standards. 
Error due to registration of the map to the digitizer was a large component. 
Errors were found to be significantly different from normal with differences 
between operators also statistically significant. Dunn et al. (1990) found that 
the interaction of scale, quality of source documents and digitizing operator 
could result in unexpectedly large amount of error. Vector to raster conver-
sion or rasterization necessarily involves a degree of generalization (loss of 
precision) as a function of cell size (Veregin, 1989b). Rasterization is often an 
integral part of database creation or used as an adjunct to layer combination 
techniques, such as map algebra. An example of the effect of vector to raster 
and raster to vector conversion can be seen in Figure 8.9 where source con-
tours have been converted to raster and back again. The discrepancies are 

Figure 8.9
Example of distortions in data that arise from vector to raster and raster to vector conversion.
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obvious. Bregt et al. (1991) used a boundary index BI (total length of polygon 
boundaries divided by map sheet area; cm/cm2) to compare error resulting 
from central point and dominant unit rasterization for 1:50,000 scale maps 
for three sizes of cell. They found that BI explained at least 99% of variance 
(Figure 8.10) and that for the most complex maps tested (BI > 2) the incremen-
tal error ranged from 5 to 20% depending upon grid size. Choice of grid size, 
which is user driven, therefore, is a critical consideration.

Improving data quality inevitably has cost and time implications. “Few 
natural resources data can be determined with an accuracy ±10% at a price 
resource survey agencies can afford. Hence, there is a tendency to study them 
intensively at a few ‘representative’ sites and extrapolate” (Burrough, 1986b). 
The reality would appear to be that many mapping products are just not 
tested for accuracy (Fisher, 1991) and become instead an act of faith. Recourse 
to higher-order surveys as a means of checking may increase uncertainty. The 
object “village,” for example, breaks down into buildings and subland uses at 
higher resolution making delineation more difficult. Testing based on well-
defined, unambiguous points leads to other problems. First, there may be no 
well-defined points to test as, for example, in a flood hazard map. Second, 
well-defined, unambiguous points are likely to be more accurately mapped 
in the first place leading to a biased evaluation of accuracy. The use of error 
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matrices has also been criticized as inadequate (e.g., Lunetta et al., 1991) since 
they do not address the spatial distribution of errors and the relationship 
between error and class boundaries. Grundblatt (1987), for example, identified 
that errors increase along boundaries. Methods of sampling may also intro-
duce bias because, for example, in soils mapping, testing is frequently carried 
out purposefully in the interior of polygons and not near the edge. Methods 
of deriving measures of data quality usually result in global measures of accu-
racy either for an entire coverage or for individual classes within them. These 
measures can provide limited information on spatial variation in quality since 
they assume that error is uniformly distributed. In reality, this is unlikely to 
be the case. Concepts of statistical accuracy and error are not so easily trans-
ferred to the notion of uncertainty in the analytical products derived from the 
base mapping. This requires us either to be able to model error propagation 
through to the products or have ways of assessing the fitness-for-use per se.

Modeling Error and Uncertainty in GIS

It should be noted at the outset that there is no single best approach to mod-
eling uncertainty for the various data handling and transformation func-
tions that source data might be subjected to in GIS. This is partly because 
we do not yet have a single, generally accepted theory of uncertainty in GIS 
(Heuvelink, 1998) and partly because different GIS functions operate on the 
uncertainty in different ways. Hence, we shall approach the problem of mod-
eling error and uncertainty from the perspective of specific GIS functionality 
to begin with (topological overlay and interpolation) and then go on to some 
wider generic issues (fuzzy concepts and uncertainty analysis). Given the 
wide range of possible GIS functions, I have been selective here. For other 
overviews, see Goodchild and Gopal (1989), Heuvelink (1998), and Hunter 
(1999). This is an area of ongoing research and the reader is urged to consult 
relevant journals on a regular basis.

Topological Overlay

Topological overlay is one of the functions that characterize GIS from other 
types of software. The overlay operation requires that two or more data 
layers are superimposed or combined to produce a new, composite map. 
Identification of co-location of objects or feature classes through overlay is 
fundamental to many forms of spatial analysis. An example is the spatial 
co-existence approach to environmental modeling discussed in Chapter 6. 
The overlay operation can be carried out on both raster and vector data and 
may take a number of forms. For example, layers having numerical attributes 
can be combined using arithmetic operators (map algebra) while categorical 
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attributes can have Boolean operators applied to them. For vector polygon 
overlay there are three fundamental components: (1) the determination of 
geometrical intersection, (2) reconstruction of topology, and (3) the assign-
ment of attributes. Implementations may differ between vendors—ArcGIS 
and ArcView, for example, combine overlay and Boolean selection in one 
command (IDENTITY, INTERSECT, UNION). Where individual data layers 
contain geometric discrepancies, polygon overlay results in the creation of 
spurious polygons commonly known as slivers (Figure 8.11). These small, 
often numerous polygons tend not to reflect reality and are derived mostly 
from data processing. The original discrepancies may arise from digitizing, 
numerical rounding, generalization, changing map projection, and from poor 
conflation (matching of common boundaries in different layers). Numerical 
errors introduced by geometrical operations on objects represented by float-
ing-point numbers (Hoffman, 1989) will result in perturbations and creep in 
vertices and edges during the overlay process (Pullar, 1991). Veregin (1989a) 
provides the following formula for the maximum number of slivers to be 
expected from overlaying two polygon layers:

 s v vmax min( , )= ⋅ −2 41 2   (8.2)

where smax = maximum number of sliver polygons, v1, v2 = the number of 
vertices in each data layer.

Slivers

Figure 8.11
Example of sliver polygons in the overlay of geology and land cover in our example 
landscape.
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Strategies for managing or reducing slivers from overlay must be able to 
first determine those polygons that are truly spurious. The most popular 
approach relies on an epsilon band (ε) that is a buffer zone used to represent 
the possible error around a point or line (Figure 8.3). The concept was intro-
duced into GIS by Chrisman (1982, 1983b) and Blakemore (1984) based on a 
formulation by Perkal (1956). Smith and Campbell (1989) found that when 
using ε on two geomorphological factor maps, an average of 30% error could 
occur in simple area measurements after overlay. Caspary and Scheuring 
(1993) give further consideration to the shape of the ε band and present a 
sagging or pinched buffer zone using ε/√2 in the middle of the line merging 
with a disk of radius ε at the end points of the line. Zhang and Tulip (1990) 
use ε as a fuzzy tolerance for automatic removal of spurious polygons, while 
Law and Brimicombe (1994) use ε to classify mismatches when combining 
primary and secondary data source in GIS and thereby allowing the use 
of a decision tree to reconcile the two data sets. Problems naturally arise 
in quantifying ε. Law (1994) provides a summary of sources of error and, 
assuming independence, the range of ε for 1:1000 scale mapping in Hong 
Kong (Table 8.2). Many vendors, however, will merely allow users to specify 
whatever tolerances they feel appropriate for the removal of slivers during 
the overlay process.

The types of error evident in the results of vector overlay are not always 
easy to disentangle as they lie along a continuum (Chrisman, 1989). Although 
Chrisman considers there is no workable theory, he has devised a framework 
(Figure 8.12), which considers the influence of scale on how errors might be 
classified. At the extremes of the diagonal, slivers are clearly distinct from 
attribute error. It is also useful to distinguish between slivers and more seri-
ous positional errors. The intermediate ground, however, is less clear and 

Table 8.2

Estimated ε (mm at map scale) for 1:1000 Scale Mapping in 
Hong Kong

Source of Discrepancy Best Case (mm) Worst Case (mm)

Control survey 0.001 0.02
Detail survey 0.005 0.02
Plotting control 0.2 1.0
Plotting detail 0.2 2.0
Fair drawing 0.06 0.18
Generalization 0.0 1.0
Map reproduction 0.1 0.2
Digitization 0.25 0.25
Total discrepancy (mm) 0.395 2.477

Source: Adapted from Law, J.S.Y. (1994) Data conversion, updating 
and integration of LIS data in a CAD system. Unpublished 
MSc. dissertation. Hong Kong Polytechnic University.
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persists as a sizeable grey area in vector overlay. Overlay operations on ras-
ter data assume that the data layers are registered to the same grid. This, in 
many ways, avoids the geometric problems of vector overlay and accounts 
for why raster is considered the easier of the data models for modeling error 
propagation (Goodchild, 1990b). Where positional error and attribute error 
occur during compilation, these tend to manifest themselves in a raster data 
layer as attribute errors (i.e., a grid cell assigned the wrong attribute). These 
are then difficult to distinguish. In synthetic tests by Arbia et al. (1998), posi-
tional errors consequent on, say, geo-rectification of satellite imagery, vector 
to raster conversion and resampling to new cell size or cell orientation were 
found to play a prominent role in accounting for a third of the propagated 
error. Where arithmetic operators are used in map algebra, any uncertainty 
for the user may also focus on the weightings and the actual operators used 
to combine the layers. Decisions on weightings and arithmetic operators are 
made external to GIS and are more a matter of professional competence.

Turning then to the modeling of categorical error in the overlay process, we 
have already seen from the studies in the previous section—Early Warnings—
that a modified rule of thumb developed: The product of overlay may be less 
accurate than the individual layers, but in any case could not be more accurate 
than the least accurate layer used. This rule of thumb assumes that all map 
combinations employ the INTERSECT or Boolean AND with composite map 
accuracy thus calculated as the product of individual layer accuracy as in 
Formula (8.3) below. Veregin (1989a), however, points out that this is not the 
only way selection can be carried out in map overlay where Boolean OR and 
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A framework for distinguishing geometric and attribute errors in vector overlay. (Modified 
from Chrisman, N.R. (1989) in The accuracy of spatial databases, ed. N.F. Goodchild and S. Gopal. 
Taylor & Francis, London.)
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NOT are also commonly used. While an AND (intersection) operation com-
bines the individual probabilities and tends to reduce composite map accu-
racy with the number of layers used (Figure 8.13(a)), an OR (union) operation 
is unity minus the combined probabilities of the errors and acts to increase 
composite map accuracy (Formula (8.4), Figure 8.13(b)). Furthermore, by de 
Morgan’s law, the NOT of an AND can be taken as an OR and the NOT of an 
OR as an AND, so only two formulae are required. The implication is that in 
an analysis involving several stages of union and intersection, the accuracy of 
the products of each stage could have progressively enhanced or deteriorating 
accuracy. Rules of thumb regarding the accuracy of final outcomes cannot be 
relied upon unless only one type of Boolean operator is in use. Lanter (1991), 
Lanter and Veregin (1992), and Veregin (1994) pursued the idea that propaga-
tion of error would have to be traced through the analysis using an internal 
record of its lineage (the sequence of operators) within GIS from which the 
accuracy of the global product might be known. An example of such error 
tracking is given in Figure 8.14 where PCC is propagated through an analysis. 
This has been modeled on the earlier analysis of potentially unstable slopes 
illustrated in Chapter 5, Figure 5.10 with an additional consideration of volca-
nic soils. The “select” command allows the selection of a particular class from 
within a layer resulting in the use of the PCC for that class from the confusion 
matrix rather than the global PCC for the layer. Intersect and union propa-
gate as discussed above. The technique assumes that the confusion matrix is 
known or can be estimated for each map layer. The outcome of the analysis 
presented here would suggest a final map accuracy for villages at risk from 
unstable slopes to be 75%. The technique provides a ready means of arriving 
at a global estimate of accuracy for an analytical product. However, we should 
not forget the criticisms leveled at both the use of confusion matrices and 
global indices in GIS context as discussed in the previous section.

Boolean AND:

 P E P Ec i
i

n

[ ] [ ]=
=

∏
1

  (8.3)

Boolean OR:

 P E P Ec i
i

n

[ ] [ ]= −
=

∏1
1

  (8.4)

where P[ Ec ] = composite map accuracy, P[ Ei ] = the accuracy of a given layer 
as a proportion correctly classified, P[ Ei ] = the error of a given layer such 
that P[ Ei ] = 1 – P[Ei ]. For a recent discussion of propagation of probabilities 
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in flood simulation studies as a means of assessing overall uncertainty, see 
Golding (2009).

interpolation

So far we have looked at categorical data (nominal or ordinal) in polygon 
or raster coverage. Another common form of data is quantitative attributes 
that often start out as point data sets, but are transformed into fields through 
interpolation functionality. This poses a different set of problems for error 
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Figure 8.13
Composite map accuracy: (a) for the AND operator, (b) for the OR operator. (Adapted from 
Veregin, H. (1989a) in The accuracy of spatial databases, ed. N.F. Goodchild and S. Gopal. Taylor 
& Francis, London, pp. 3–18.)
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propagation. As we have already seen in Chapter 4 and will revisit again in 
Chapter 9, interpolation is not an exact science, but is itself model-based and 
can introduce operational uncertainty. Let us consider the isohyet map for 
our example landscape on which the rainfall stations have now been placed 
(Figure 8.15(a)). There is one rain gauge in each village and one each near 
where the main roads cross the rivers (where there are also flow gauges). The 
table in Figure 8.15(b) gives the recorded rainfall, that which is indicated by 
the interpolation and the residual error (observed – expected). The interpola-
tion was not carried out solely from the five rain gauges that we can see, but 
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Figure 8.14
Propagation of PCC through an analysis using cartographic processing.
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included others in the wider landscape outside our study area. The RMSE cal-
culates to 2.69 mm, which is quite close to half the contour interval (see map 
accuracy standards above), but is clearly dominated by gauge R1, which has 
a much higher residual error due to flattening of the contours near the loca-
tion of peak rainfall. If only such a global measure of accuracy were available, 
we might be reasonably pleased with the result. However, as we know from 
Chapter 4 and as intuition tells us, the highest accuracies are likely to be at the 
rain gauges that form the basis for the interpolation. So, accuracy of the inter-
polation is likely to be spatially variable, decreasing away from the points of 
measurement. But, because we cannot check this in the field after the event by 
randomly placing additional rain gauges (the storm has passed) and we have 
too few measurement sites to hold back some of the data for subsequent eval-
uation, we must look to other methods. Given so few data points, inverse dis-
tance weighted (IDW) interpolation was not used and instead a geostatistical 
technique called kriging was employed. One of the many advantages of krig-
ing is that it can give an indication of its accuracy. Before going farther then, 
we must look at the details of this particular computational model, which, 
while being an important spatial modeling technique, is only just beginning 
to find its way into mainstream GIS software.

Kriging

Named after D.G. Krige (1966), a mining engineer, kriging is a geostatistical 
method of interpolation, which divides spatial variation into three compo-
nents (Figure 8.16(a)):
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Interpolated rainfall: (a) isohyets (mm) for a storm event, (b) source data and errors (all in mm) 
for the rain gauges in the area.
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 1. A structural component that represents deterministic average behav-
ior or a trend in the behavior.

 2. A regionalized component of complex, but spatially correlated 
variation.

 3. A random component of Gaussian noise that represents the residual 
error term.

In Chapter 4, we saw the important role that spatial dependence (correla-
tion) plays in many geographical phenomena. This is used to effect in krig-
ing. If you imagine a phenomenon represented by a gridded data set, such 
as the DEM in Figure 4.8, it would be apparent that adjacent values in the 
grid would be more likely to be similar than grid values farther away. If we 
were to take the first column of values and calculate the correlation with the 
adjacent column, we would expect the correlation to be high. With each col-
umn farther away, or lag, we would expect the correlation to be progressively 
lower. This is illustrated in Figure 8.16(b), which shows the correlation for 
successive lags from the first column of the DEM. As expected, the correlation 
progressively falls with increasing lag. However, because of the periodicy 
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An example of kriging: (a) components of spatial variation, (b) declining correlation with lag, 
(c) the variogram.
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evident in our example landscape, eventually the correlation begins to rise 
again, but the point is made—there is a distance within the landscape at 
which dependence reaches a minimum. Now, imagine carrying this exercise 
out for every known point in the data set; you would need a computational 
model to do so. In kriging, this exercise results in a semivariogram or often 
referred to simply as a variogram. The semivariance or γ (gamma) is an esti-
mate of the autocovariance at a particular lag h, thus:

 γ( { ( ) (h h) )}2= − +
=
∑1

2
1

n
z x z xi i

i

n

 (8.5)

where γ(h) = semivariance at lag h, z(xi) = value of data point xi, z(xi + h) = 
value of data point at lag h from xi, n = the number of data pairs at lag h.

The resulting variogram has a number of components that are evident 
once a best-fit curve is established (Figure 8.16(c)):

γ•	 (h) increases with lag (varying inversely with autocorrelation) to 
reach a sill beyond which there is no increase in γ(h).
The lag •	 h at which the sill is reached, known as the range, represents 
the limit of spatial dependence.
An intercept of •	 γ(h) > 0, or nugget, is an estimate of the spatially 
uncorrelated noise.
The shape of the fitted curve is instrumental in assigning weights in •	
the subsequent interpolation of a grid.

In using the components of the variogram to effect an interpolation, krig-
ing can also, because of its statistical nature, calculate the variance σ2 at each 
interpolated point thereby giving an indication of the reliability of the inter-
polated points. Figure 8.17(a) shows the variogram for the rainfall data in our 
example landscape while Figure 8.17(b) gives the isohyets, as in Figure 8.15 
with the kriging variances added. This clearly shows low variance (higher 
reliability) around the original data points with increasing variance (lower 
reliability) as distance increases from the data points. For further details 
on geostatistical methods, the reader can refer to Burrough and McDonnell 
(1998), Isaaks and Srivastava (1989), Cressie (1993), and Kanevski and Maignan 
(2004). Software for calculating the variogram and kriging interpolation 
is available in Surfer, in ArcGIS, and as part of the GSLIB public domain 
software (Deutsch and Journel, 1992). A variogram modeling java class is 
described by Faulkner (2002), while Brimicombe et al. (2009) report on the 
development and testing of a variogram agent for use in distributed compo-
nent GIS. A further use of the variogram can be to guide sampling schemes 
so that the distance between samples will provide adequate support while 
minimizing spatial dependence between samples.
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If through kriging a data layer representing reliability is generated for 
each interpolation, then the possibility must exist of propagating such error 
through analyses that have more than one interpolated layer. This forms the 
core of Heuvelink’s (1998) book. If the input data were without error, then the 
kriging variance would reflect only the operational uncertainty. However, 
as we have discussed above, it is unlikely that any input data are free of 
uncertainty. So, the contribution of any such errors to the kriging needs to 
be modeled and, if the results of one interpolation forms the input to a sub-
sequent GIS operation, then the uncertainties will be propagated on. Using 
Heuvelink’s formulation, this can be expressed as:
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(a) Variogram and (b) kriging variance for the rainfall interpolation in the example landscape.
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 U x g A b x V x A b x V xm m m( ) ( ( ( ) ( )), ( ( ) ( )))= + +1 1 1 …  (8.6)

where x = location of a grid cell where x ∈ D (domain of interest), U(·) = 
output map containing all x ∈ D, g(·) = a GIS operation, A(·) = an input map 
containing all x ∈ D, b(·) = value of x in the input map, V(·) = a random field 
representing error or uncertainty.

If g(·) is a linear function, then it is relatively straightforward to derive the 
mean and variance of U(·) that describe the most probable values in U(·) and 
their reliability. On the other hand, if g(·) is nonlinear (as in the case of most 
interpolation methods), then Heuvelink suggests four possible methods of 
estimation: first-order Taylor series, second-order Taylor series, Rosenbleuth’s 
method, and Monte Carlo simulation, all of which are computationally 
intensive and are not reproduced here. These methods yield maps giving the 
mean and variance (or standard deviation if so computed) of U(·). It must be 
reiterated, though, that these methods are for the propagation of quantitative 
attribute errors and are not applicable to positional and categorical errors.

Fuzzy Concepts in giS

As we have seen above, there is a fundamental tension between natural variation 
in the real world and the dominant data models of GIS, which focus on mutu-
ally exclusive, homogeneous classes of objects with abrupt spatial boundaries. 
We have also seen how some researchers such as Bouille (1982) and Burrough 
(1986a) were from an early stage calling for essentially fuzzy phenomena to be 
modeled as such. Initial moves in this direction were to use probabilities as we 
have seen in the overlay of categorical data. But, as pointed out by Ehrliholzer 
(1995), the more interpretive and complex the data in a coverage, the more suit-
able are qualitative methods of assessment likely to be. Starting in the early 1990s, 
there was a move toward researching the treatment of probabilities as fuzzy 
measures (Heuvelink and Burrough, 1993; van Gaans and Burrough, 1993) 
where the Boolean selection is replaced by fuzzy logic in which intersection 
(AND) and union (OR) are instead based on MIN and MAX functions, respec-
tively. The resulting probabilities thus reflect the degree of class membership in 
the final product. By the late 1990s, a considerable body of literature had devel-
oped in which fuzzy concepts (fuzzy sets, fuzzy logic, and fuzzy numbers) had 
been used as a means of accounting for variability and as a means of propagat-
ing that variability and any uncertainty to the analytical products.

Zadeh (1965) first introduced, as a concept, fuzzy sets and their associated 
logic. Whereas traditional mathematics and logic have assumed precise sym-
bols with equally precise meanings, fuzzy sets are used to describe classes 
of inexact objects. Thus, though Boolean logic relies on a binary (0, 1) (termed 
crisp), fuzzy sets have a continuum of membership. Because imprecisely defined 
classes are an important element in human thinking, fuzzy sets have found 
early application in knowledge engineering (Kaufmann, 1975b; Graham and 
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Jones, 1988), cognitive psychology (Nowakowska, 1986), linguistics (Zadeh, 1972; 
Lakoff, 1973; Kaufmann, 1975a; Gupta et al., 1979), engineering (Blockley, 1979; 
Brown and Yao, 1983), and the environment (Ayyub and McCuen, 1987). General 
texts on fuzzy sets include Kaufmann (1973); Dubois and Prade (1980); Klir and 
Folger (1988); Harris and Stocker (1998); and Buckley and Eslami (2002).

Theory of Fuzzy Sets

A fuzzy set assigns levels of membership µ in a range [0, 1] for each element 
of x in a set A in a universe U:

	 ∀x ∈ U, {x|µA} 0 ≥ µA(x) ≤ 1  (8.7)

Hence, for intervals of x of 0.1 in the range [0, 1], set A is characterized by:

 A = { , . , . , . , . ,. . . .0 0 1 0 2 0 3 0 80 0 1 0 2 0 3 0 8µ µ µ µ µ… . , }.0 9 10 9 1µ µ  (8.8)

where μ0 indicates level of zero level of support for membership of A and 
µ1 indicates complete support for membership in A. Thus, the traditional 
binary (0, 1) can be viewed as crisp sets in the form:

 ¬ = =A { } { }0 11 1µ µA   (8.9)

(where ¬ is Boolean NOT) and, thus, can be viewed as a special case of fuzzy 
set. Crisp and fuzzy sets are illustrated graphically in Figure 8.18.

Fuzzy sets can be combined in Boolean operations and, in general, can be 
handled in a simpler way than probabilities:

Intersection (∩) A AND B:

 ∀ ∈ =∩x x xU A B A B, MIN( ( ), ( ))µ µ µ  (8.10)

Union (∪) A OR B:

 ∀ ∈ =∪x x xU A B A B, MAX( ( ), ( ))µ µ µ  (8.11)

In other words, for an intersection AND the minimum membership of all 
elements x are taken and in the union OR the maximum membership of all 
elements x are taken (examples are given below). This has important paral-
lels with Formula (8.3) and Formula (8.4). Thus, fuzzy sets can be propagated 
through analyses typical of those carried out in GIS where overlay is com-
bined with Boolean selection. Fuzzy set operations and the use of fuzzy sets 
in a geographical context have been reviewed by Macmillan (1995). The term 
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fuzzy has been introduced into GIS for handling uncertainty, though for the 
most part it has been loosely applied to any nonbinary treatment of data, such 
as probabilities. However, there are important differences between probabili-
ties and fuzzy sets. First, probabilities are still crisp numbers in the way they 
are formally defined. Second, probability of A and ¬A must sum to unity, 
but not necessarily so for fuzzy sets where there can be some unknown or 
unquantified residual. Thus, fuzzy sets, from this perspective, are easier to 
use than probabilities. Nevertheless, the use of fuzzy set theory proper has 
thus far been quite restricted (Unwin, 1995) and is reviewed in a spatial anal-
ysis context by Altman (1994). One area of application has been the “fuzzifi-
cation” of data, database queries, and classification schemes through the use 
of fuzzy membership functions, as a means of overcoming the uncertainty 
implicit in the binary handling of data (Kollias and Voliotis, 1991; Burrough 
et al., 1992; Guesgen and Albrecht, 2000). Another area of application has 
been to quantify verbal assessments of data quality from image interpreters 
and as a consequence of expert evaluations (Hadipriono et al., 1991; Gopal 
and Woodcock, 1994; Brimicombe, 1997; 2000a). Use of fuzzy numbers for 
recording and propagating geometric uncertainty is given in Brimicombe 
(1993; 1998). However, we are still some way off from seeing fuzzy concepts 
as part of mainstream GIS software. The theoretical dryness of fuzzy sets 
(above) can be brought to life and illustrated through a GIS example.

Example of Fuzzy Sets in GIS

In Figure 8.4, I illustrated the problems of interpreting natural variation into 
discrete classes. Suppose we could express our certainty of class membership 
linguistically, somehow store that against the appropriate polygon in GIS, and 
propagate that linguistically expressed uncertainty to any analytical products. 

not A not A

Element x1 | µA(x1)

U U

A Fuzzy set A

Figure 8.18
An illustration of crisp and fuzzy sets.
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Nice? Well, entirely feasible. Before we look at a GIS example, first we need to 
consider how fuzzy sets are used to describe linguistic terms. Verbal assess-
ments or linguistic hedges are a common qualitative indicator of data accu-
racy and reliability. For example, a set of linguistic hedges (certain, reliable, 
well-defined, poorly defined) for features and boundaries have been defined 
and encouraged for use in API for terrain evaluation by the Geological Society 
Working Party on Land Surface Evaluation for Engineering Practice (Edwards 
et al., 1982). The problem that arises, however, is that these types of “standard” 
linguistic hedges (Table 8.3) are defined in terms of yet other hedges that, to 
each individual, may have different nuances and interpretations. When more 
than one language is considered, the problem of “meaning” of linguistic 
hedges is compounded apparently to the point of impossibility.

One of the earliest and main applications of fuzzy sets has been to repre-
sent qualifying adjectives such as “tall” or “short.” Empirical studies of fuzzy 
set equivalents of linguistic hedges (Zadeh, 1972; Lakoff, 1973; Kaufmann, 
1975a) have shown a general pattern of reduced spread in the fuzzy sets as 
they tend toward the more definite boundaries of 0 and 1. Examples of such 
fuzzy set representation of linguistic hedges (Ayyub and McCuen, 1987), and 
illustrated graphically in Figure 8.19, are:

Small, low, short, or poor:

 A = {0|1, 0.1|0.9, 0.2|0.5}  (8.12)

Medium or fair:

 A = {0.3|0.2, 0.4|0.8, 0.5|1, 0.6|0.8, 0.7|0.2} (8.13)

Large, high, long, or good:

 A = {0.8|0.5, 0.9|0.9, 1|1}  (8.14)

Table 8.3

Linguistic Hedges Suggested for Use in Aerial 
Photographic Interpretation

Qualifying Term Definition

Features Certain Well defined, identifiable
Reliable Poorly defined, identifiable
Unreliable Deduced

Boundaries Well defined Full boundary distinct
Poorly defined Boundary mainly distinct
Partly defined Boundary mainly inferred
Estimated Boundary inferred

Source: Based on Edwards, R.J.W. et al., (1982) Quarterly 
Journal of Engineering Geology 15: 265–316.
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In a GIS and RS context, fuzzy sets have been used to represent linguis-
tic hedges and other qualifying adjectives by Hadipriono et al. (1991) and 
Gopal and Woodcock (1994). However, the choice of linguistic hedge and 
their “translation” into a fuzzy set space within the literature often appears 
arbitrary. More worrying are schemas that give linguistic hedges equal spac-
ing and spread of their fuzzy sets (Figure 8.20), which do not accord with 
the generally accepted use of fuzzy sets to represent linguistic hedges as 
discussed above (compare with Figure 8.19(a)).

Other difficulties arise in the use of fuzzy sets. While the definition of a 
linguistic hedge as a fuzzy set can be a fairly straightforward process, the 
same cannot necessarily be said for the reverse. Faced with a fuzzy set that 
does not fit any predefined terms, it can be very difficult to interpret as an 
appropriate linguistic. Furthermore, fuzzy sets are cumbersome to store in a 
database. Not only is the notation difficult to encode, but there are 39,916,789 
useful combinations of fuzzy sets in the range [0,1] for an interval of xi = 0.1. 
These are serious problems in the use of fuzzy sets and while they may at 
first appear to be an attractive solution (commented on by many authors), it 
is problems such as these that have detracted from more widespread use in 
GIS. To overcome these problems, a sort of “universal translator” is required, 
which, using a limited number of fuzzy sets, could be used in the two-way 
translation of linguistic hedges and fuzzy sets. Figure 8.21 gives a series of 
11 stylized fuzzy sets in the range [0,1] that have a number of attributes that 
make them particularly useful as linguistic building blocks:

The stylized set begins and ends with binary (crisp) numbers 0 = •	
{0|1} and 1 = {1|1}.

The nine intermediate fuzzy sets are spaced with their maximum •	
membership of µA(x) = 1 stepped across the range xi at 0.1 interval. 
Thus, each fuzzy set has its maximum membership uniquely placed 
within the [0, 1] range.

Bad
0

µ 0.5

1.0

Moderately
Bad

Moderately
Good

Good

Figure 8.20
An example of arbitrary definition of linguistic hedges as fuzzy sets.
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The roughly triangular form of the fuzzy sets spreads toward the •	
center of the range of fuzzy sets. Thus, where there is greatest uncer-
tainty (midway in the [0, 1] range), the fuzzy sets are most spread to 
reflect higher levels of uncertainty. The reduced spread in moving 
toward 0 or 1 accords with the empirical evidence for fuzzy set rep-
resentations of linguistic hedges.

The Hamming, or orthogonal, distance between each fuzzy set and •	
its immediate neighbor is constant at 2.00 indicating that the fuzzy 
sets unambiguously partition up the space over the range [0,1]. The 
orthogonal distance between two fuzzy sets is calculated by:

 d( , ) ( ) ( )A B A B= −
=
∑ µ µx xi i
i

n

1

 (8.15)

A common form of hedge, other than purely linguistic, is intuitive (subjec-
tive) probabilities that individuals use in making judgments under uncer-
tainty (Tversky and Kahneman, 1974). Thus, an individual may say, “I’m 80% 
sure.” Since both types of hedges—linguistic and intuitive probability—
are frequently used, it is possible for an individual to make an equivalence 
between the two. Thus, “I’m reasonably sure” may be, for an individual, an 
equivalence to “I’m 80% sure.” This would be for each individual to define in 
his or her own language. Given the way the stylized fuzzy sets in Figure 8.21 
step across the range [0, 1], each stylized fuzzy set can be “labeled” or iden-
tified by the xi where A(xi) = 1. These labels at 0.1 intervals in the range [0, 
1] provide an intuitive probability-like metric that we will refer to as fuzzy 
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A graph that shows a set of 11 stylized fuzzy sets unambiguously partitioning the range [0, 1].
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expectation (≈E). Thus, the choice of a value of ≈E as an intuitive probability 
gives an underlying stylized fuzzy set (Figure 8.22).

Values of ≈E are both the building blocks for fuzzy set representations of 
linguistic hedges and the means for “translating” fuzzy sets into qualifying 
statements of fitness-for-use. So, for example, suppose we have an observer 
who is collecting data by API in which the observer is able to qualify each 
polygon as it is delimited and assigned to a class, the range of linguistic 
hedges used in such a task may be those listed in Table 8.4, which express 
the observer’s degree of certainty. The observer also defines these hedges in 
terms of ≈E. To do so, the observer has to match only intuitive probabilities 
or sets of intuitive probabilities to the linguistic hedges in use; the underly-
ing stylized fuzzy set or sets are substituted automatically by the GIS soft-
ware. Users of the system do not have to think in terms of fuzzy sets, only in 
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Figure 8.22
Illustration of fuzzy expectation (≈E) as an intuitive probability with underlying fuzzy sets.

Table 8.4

An Example of a Translation 
between an Observer’s Linguistic 
Hedges of Certainty and ≈E

Mapping in Observer’s Uncertainty

Linguistic ≈ E

Certain 1.0 OR 0.9
Reasonably certain 0.8
Moderately certain 0.7 OR 0.6
Not terribly certain 0.6 OR 0.5
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terms of their own linguistic hedges and their equivalent intuitive probabili-
ties. Table 8.5 shows the reverse process whereby values of ≈E in analytical 
products are given equivalence with a user’s expressions of fitness-for-use. A 
number of points can be noted about this process:

A linguistic hedge may be equivalent to one or more values of ≈•	 E.
These values would normally be adjacent in the series (logically), but •	
need not necessarily be so.
Linguistic hedges can overlap in their ≈•	 E equivalence showing that 
two linguistic hedges may be close in meaning (and, hence, two dif-
ferent hedges may have the same ≈E equivalence if they express the 
same degree of certainty).
Where two or more values of ≈•	 E are used, they are not used singly, 
but are combined using a Boolean OR prior to propagation through 
analysis.
The linguistic hedges need not be limited to English, but can be in any •	
language where the user of that language can define ≈E equivalence.
The degree of certainty associated with every polygon can be entered •	
into a GIS database using natural language.
A table giving the linguistic hedges and their ≈•	 E equivalence used 
by an observer could be stored as metadata for future reference.
The mapping of ≈•	 E in analytical outputs to a user’s linguistic fitness-
for-use is achieved by matching the relevant ≈E by taking the styl-
ized fuzzy set that is at a least distance from the output fuzzy set 
using relative orthogonal distance:

 δ µ µ( , ) ( ) ( )A B A B= −
=
∑ x x ni i

i

n

1

 (8.16)

where n number of nonzero pairs of xi in A and B.

Table 8.5

An Example of a Translation between ≈E in Analytical 
Products and a User’s Linguistic Expression of Fitness-for-
Use in Two Different Contexts

Mapping Out Users’ Assessment

Linguistic

≈ E

Context A Context B

Good 1.0 OR 0.9 OR 0.8 1.0 OR 0.9
Acceptable 0.7 OR 0.6 0.8 OR 0.7
Unacceptable 0.5 OR 0.4 OR 0.3 or 0.6 OR 0.5 OR 0.4 OR 0.3 OR

0.2 OR 0.1 OR 0.0 0.2 OR 0.1 OR 0.0
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Let us now work through a basic example in Figure 8.23. There are two 
layers, one for “condition of habitat” and the other for “pressure zones.” In 
the first layer, a polygon has been interpreted as having “poor” condition 
of habitat and the observer is confident of this interpretation and gives a 
certainty rating of “good” equivalent to ≈E = 0.9 OR 0.8. In the second layer, 

Due to homogeneity within the area,
Expert A  deems classification to be
“Good”   ≈E = 0.9/0.8 

Due to heterogeneity within the area,
Expert B deems classification to be
“Reasonable”   ≈E=0.8/0.7/0.6 

Class = Poor

Class = Recreational

Condition of Habitat

Pressure Zones

≈E0.9={ .8|.9, .9|1, 1|.9}

.6|.5, .7|.9, .8|1, .9|.9, 1|.5}

.6|.5, .7|.9, .8|1, .9|.9, 1|.5}

.6|.5, .7|.9, .8|1, .9|1, 1|.9}

.6|.5, .7|.9, .8|1, .9|.9, 1|.5}

Maps to Expert C’s fitness-for-use criterion
“Acceptable”   ≈E=0.8/0.7 

≈E     ={

≈E     ={

≈E     ={.4|.3, .5|.7, .6|1, .7|1, .8|1, .9|.9, 1|.5}

OR

AND

OR
.5|.4, .6|.8, .7|1, .8|.8, .9|.4          }

.6|.5, .7|.9, .8|1, .9|1, 1|.9}

OR
≈E0.8={

≈E0.8={

≈E0.7={

≈E0.6={.4|.3, .5|.7, .6|1, .7|.7, .8|.3                    }

≈E      ={.4|.3, .5|.7, .6|1, .7|1, .8|1, .9|.9, 1|.5   }

Overlay of Habitat and
Pressure Zones

Class = Poor AND Recreational

≈E     ={

Figure 8.23
A basic example of propagating expert opinion on data quality into a statement of fitness-for-
use following an overlay operation.
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a similar process has been carried out for a polygon deemed “recreational” 
with “reasonable” certainty. When the two polygons are overlaid to give 
poor condition of habitat AND recreational pressure zone (i.e., intersection 
of both layers), ≈E propagates from the two data layers. The topological over-
lay is performed as in any standard GIS software, but ≈E is also calculated 
first through the Formula (8.11) to combine the individual ≈E of the stored 
quality statements and then by Formula (8.10) to combine the resultant fuzzy 
sets from the two data layers. Using Formula (8.16), this final propagated 
fuzzy set is closest to ≈E = 0.8 (compare with Figure 8.22). In the user’s crite-
rion, this has a fitness-for-use that is an “acceptable” equivalent to ≈E = 0.8 
OR 0.7. The problem of encoding and storing numerous cumbersome fuzzy 
sets is simplified to one or more pointers to a lookup table containing the 11 
stylized fuzzy sets. Calculating through the propagation of ≈E occurs only 
in tracking an analysis. Within the context of a particular application, it is 
the user who can best establish the quality criteria for acceptance or rejection 
of the informational output from analyses. After propagation, the resulting 
fuzzy set is unlikely to have ”meaning” until translated to a linguistic term 
that reflects fitness-for-use in the current context. It is conceivable then that 
input and output of quality statements may even be in different languages.

We can now examine a more complex example where, using Table 8.4 and 
Table 8.5, we can look at the effect of changing context and also consider the 
fitness-for-use of the boundaries to polygons.

Figure 8.24 shows two sample categorical data sets, factor (layer) 1 and fac-
tor (layer) 2 that have been created synthetically for the purpose of controlled 
experimentation. Each is mapped into four classes. The observer who col-
lected the data worked to a set vocabulary to express the certainty of assign-
ing each polygon in both layers to its relevant class (summarized in Table 8.4 
and Figure 8.24). Any uncertainty in classifying a polygon could arise because 
there is insufficient evidence, because the unit contains a level of heterogene-
ity or because, say, the imagery being used has insufficient resolution or is 
somewhat out of date. Table 8.4 gives the observer’s mapping in or “transla-
tion” of the four linguistic hedges into values of ≈E, which are stored both as 
pointers within the attribute table of each layer and in the layer’s metadata. 
The linguistic hedges that are the quality statements for the simulated data 
focus on the characterization of the polygons. Edwards and Lowell (1996), 
however, have suggested shifting the focus toward boundaries. They have 
introduced the concept of the twain, that is, a pair of polygons and their com-
mon boundary. Their experiments on the API of synthetic texture models 
showed that boundary uncertainty was related primarily to the properties 
of the polygons on either side and not to the properties of the single polygon. 
Wang and Hall (1996) have sought to improve the expressiveness of bound-
ary representation to “describe not only the location but also the rate of 
change of environmental phenomena” through “the fuzzy representation of 
fuzzy boundaries.” For polygon maps of nominal properties, the sharpness 
of a boundary is determined by the purity of the polygons on either side. The 
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linguistic hedge is a statement of conviction of the nominal class of a poly-
gon and differences in such statements on either side of a boundary would 
influence the characterization of that boundary. Thus, given an appropriate 
technique, an indication of boundary uncertainty could be derived from the 
polygon uncertainties, hence, the initial concentration on linguistic hedges 
of polygons only.

The two categorical maps, layer 1 and layer 2, are combined in an overlay 
operation (Figure 8.25, top) followed by progressive Boolean selection in the 
form:

Factor (Layer) 1

Type A

Type B

Type C

Type D

Observer’s Certainty

“Certain”
“Reasonably certain”

“Moderately certain”
“Not terribly certain”

Observer’s Certainty

Type W

Type X

Type Y

Type Z

Factor (Layer) 2

Figure 8.24
Two categorical layers with their respective stated certainty according to the observer’s termi-
nology (Table 8.4).
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 (((A OR W) AND ¬C) AND ¬Y)

to differentiate suitable and unsuitable areas as a conventional binary output 
(Figure 8.25, bottom). This is how such a selection might take place using 
any conventional GIS software that has topological overlay. If we now want 
to ascertain the fitness-for-use of this map from the propagated ≈E stored 
in the attribute table, we need to make it context specific. This is given in 
Table 8.5 where for the same vocabulary there are two “translations” or map-
pings out from propagated ≈E where Context B is more stringent in terms 
of its requirements for fitness-for-use. Figure 8.26 shows the propagation of 
uncertainty in Context A and B for each stage of the Boolean selection given 
in Figure 8.25. Note how there is an assessment for all polygons regardless of 
the Boolean outcome in Figure 8.25. Figure 8.26 shows only the propagated 
certainty and gives an indication of the fitness-for-use of both selected and 
not selected polygons. Therefore, it must be stressed that the propagated val-
ues of ≈E do not dictate the selection or otherwise of polygons in the analy-
sis; this is not an application of fuzzy logic. By comparing Figure 8.25 and 
Figure 8.26, it can be seen that for Context A all polygons are rated “good” 
or “acceptable” (except for one small polygon) and, therefore, the Boolean 
selection can be taken as fit for use. In the more stringent Context B, however, 
we have a different situation. A number of polygons have been rated “unac-
ceptable,” which means that doubt must be cast on both the selection and 

(A or W)

Selected

Not selected

Factor (layer) 1 Factor (layer) 2

O
ve

rla
y

Progressive Boolean Selection
Result

0

1

((A or W) and ¬C) (((A or W) and ¬C) and ¬Y)

Figure 8.25
Topological overlay and Boolean selection of (((A OR W) AND ¬C) AND ¬Y).
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the nonselection of the relevant polygons through the Boolean logic. We also 
now can turn to the fitness-for-use of the polygon boundaries (Figure 8.27). 
The method here has been to calculate, using ≈E, an area-weighted average 
fuzzy set from the polygons on either side of a boundary with a mapping 
to a linguistic hedge in Table 8.5, again reflecting the particular context of 
an application. An “unacceptable” boundary in Figure 8.27 is one where its 
location is too uncertain on the evidence of the uncertainty of the polygons 
on either side.

As with any technique, some difficulties arise. One specifically is that in 
propagating fuzzy sets through a union overlay (Boolean AND), it is pos-
sible in some instances to arrive at a null fuzzy set (i.e., for all xi, µA(xi) = 0), 
which then cannot be resolved further. In such instances, the fitness-for-use 
defaults to ≈E = 0. Also, where a fuzzy set is equidistant from two adjacent 
≈E, the lower one is taken as the match. But, there are also further advan-
tages. A record of the steps in the analysis (its lineage) permits sensitivity 
analysis (SA). For example, recomputing the fitness-for-use ≈E scores for 
experimentally altered levels of observer’s ≈E can identify what increases in 
certainty are required to improve the acceptability of the end result, say in 
Context B. Thus, for Context B, in Figure 8.24, type W in layer 2, which has a 

“Good”

User’s Assessment for Context A

User’s Assessment for Context B“Acceptable”

“Unacceptable”

(A or W) ((A or W) and ¬C) (((A or W) and ¬C) and ¬Y)

(A or W) ((A or W) and ¬C) (((A or W) and ¬C) and ¬Y)

Figure 8.26
Propagation of ≈E to map fitness for use of Figure 8.25 in terms of user’s Context A and Context 
B (Table 8.5).
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quality rating of “not terribly certain” and must be resurveyed so that it can 
be recorded as “reasonably certain” or better in order for most of the “unac-
ceptable” polygons in Figure 8.26 to become “acceptable.”

Sensitivity analysis

In this section on modeling error and uncertainty in GIS, we have looked at 
ways in which known levels of error or even estimated levels of uncertainty 
can be propagated through analyses so that a judgment about the fitness-for-
use of the analytical products can be made. We even saw in the last example 
how it would be feasible to backtrack and analyze the sensitivity of some 
level of uncertainty in order to focus data upgrade efforts to meet minimum 
criteria of fitness-for-use. As already noted, none of the main GIS vendors 
provide this type of functionality as standard. In as much as we will look at 
some technological solutions to this in the last part of Chapter 9, it is as well 
to consider here what one might do in practical terms having carried out an 
analysis using GIS. This revolves around the idea of sensitivity analysis (SA). 
While SA in GIS is by no means new (e.g., Lodwick et al., 1990), there has 
recently been renewed interest (e.g., Li et al., 2000; Crosetto and Tarantola, 
2001; Crosetto et al., 2002; Lilburne and Tarantola, 2009) that appears to have 
been prompted at least in part by the work of Saltelli et al. (2000). It is often 
advantageous to differentiate error propagation or uncertainty analysis (UA) 
that seeks to model output uncertainty as propagating from input uncer-
tainties, and SA which looks to apportion relatively among the inputs their 
degree of influence on the uncertainty of outputs. These then would form 
a complementary two-stage process. Often the term sensitivity analysis is 
used to cover both UA and SA as defined here. The issue being raised in 
this section is a global one: in the absence of measures of input uncertainty 
(data reliability) and/or the degree of added operational uncertainty, how 

(((A or W) and ¬C) and ¬Y)

Context A

“Good”

Boundaries

Polygons

Context B

“Acceptable”

“Unacceptable”

“Good”

“Acceptable”

“Unacceptable”

Figure 8.27
Boundary fitness-for-use derived from the twain ≈E for user’s Context A and Context B.
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to evaluate fitness-for-use. Figure 8.14 provides a way of quickly arriving at 
global estimates at a project planning stage and even in helping to define cer-
tain targets in data reliability when purchasing or compiling data. However, 
it is likely to be a ballpark estimate and global to entire layers. Another way 
was used in Chapter 6 in the reservoir slope instability problem where data 
perturbations in a Monte Carlo (MC)-type simulation were used to study the 
sensitivity of the output decision to changes in the inputs. The MC process in 
the context being considered here is quite straightforward:

Select a •	 probability density function (PDF) that reflects the likely pat-
tern of uncertainty within the data (e.g., uniformly, normally, or 
Poisson distributed).
Select a sampling scheme (e.g., random, stratified) by which to obtain •	
values from the PDF.
Carry out the sampling for •	 t number of trials and use these samples 
to perturb the original data that are then used to replicate the GIS-
based analysis.
Evaluate the •	 t outputs of the GIS-based analysis (e.g., calculate mean 
and variance, scatterplots, boxplots).

A good introduction to MC analysis can be found in Mooney (1997) with 
more details in Saltelli et al. (2000). The logic is that given enough trials the 
mean result will approach the true result, or put another way, “a properly 
calibrated deterministic model should give a result that is equivalent to the 
mean value of the output of the equivalent stochastic model” (Burrough, 
1997). The simulation can be carried out globally on all inputs simultane-
ously to identify the overall sensitivity of the output or to achieve a mean 
result. Alternatively, inputs can be perturbed one-at-a-time (OAT) in order to 
test output sensitivity to the individual input.

We can test this, for example, on the IDW interpolation in Chapter 4, 
Figure 4.12 and Figure 4.13. In Figure 4.13, we have already systematically 
tested the sensitivity of the output to the parameter r (distance decay) and 
we have also looked in Figure 4.12 at what a difference the sampling scheme 
makes. We would normally evaluate the RMSE of the interpolated DEM 
against a proportion of the original data held back for such a purpose. From 
this we can establish the mean and standard deviation of the residual errors 
(RMSE = standard deviation when the mean = 0) and assuming normally 
distributed errors gives us the relevant PDF. This PDF can be randomly 
sampled and used to perturb the survey points. Figure 8.28(a/b) shows 
the starting point that has a random set of observation errors added to the 
points used in the interpolation. With an RMSE of ±29.1, it is considerably 
less accurate than that achieved with our “true” sample points (RMSE ±19.5). 
The data is perturbed 20 times and IDW interpolation carried out for each. 
Figure 8.28(c) represents the mean of these 20 perturbed outputs (achieved 
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Residual Error
High positive

Low residual

High negative

Elevation

(a) (b)

(c) (d)

50–100
100–150
150–200
200–250
250–300
300–350
350–400

Figure 8.28
Monte Carlo analysis: (a) result of IDW interpolation from data points having random observa-
tion errors, (b) residual errors of (a), (c) mean surface after 20 trials, (d) residual errors (compare 
with Figure 4.12(d)).
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using map algebra) with Figure 8.28(d) showing the residual errors (RMSE 
±20.1), which when compared with Figure 4.12(d) gives a very similar result. 
For more complex models, the number of trials needed will be much higher 
before a good statistical average can be obtained. Between this example and 
that given in Chapter 6, we can gain an appreciation of the usefulness of 
MC-based SA in evaluating fitness-for-use of analytical products for deci-
sion making.

Managing Fitness-for-Use

Management refers to the strategies and methods adopted to mitigate 
against uncertainty in spatial databases and to reduce the uncertainty 
absorption required of the user (Bedard, 1986; Hunter and Goodchild, 
1993; Frank, 2008). Without an underlying conceptual model for han-
dling uncertainty, such strategies may be difficult to develop resulting 
in a series of loosely organized actions that may not achieve the desired 
goals. Any strategy needs to anticipate the entire GIS process from the 
input of data to the output of analytical products and is a quality assur-
ance process.

Beginning with identification of suitable data sets for a project, there is a 
need from the outset to assess suitability and reliability. Metadata are “data 
about data” (Medyckyj-Scott et al., 1991). They provide further descriptions 
pertaining to the objects in the database and ideally consist of a series of 
standardized attributes (Canadian General Standards Board, 1991). Coming 
under this umbrella then, are definitions of entities and attributes, measure-
ment and coding practice, rules used for spatial delimitation, data sources, 
and data quality. This gives rise to the notion of spatial data audit (Cornelius, 
1991). Thus, the theoretical purpose of metadata is to allow a user to know 
the nature of the data and its compilation, in particular, the physical and 
conceptual compatibility of the data for integration and use with other data 
sets (Hootsman and van der Wel, 1993). Their value and reliability can be 
judged. Not surprising then, the main consideration of metadata has been 
in the context of data transfer standards. For example, the U.S. Spatial Data 
Transfer Standard (SDTS) (National Institute of Standards and Technology, 
1992) requires a data quality report that specifically requires information 
on lineage, positional accuracy, attribute accuracy, logical consistency, and 
completeness. The use of all these data quality modules in a data transfer 
is mandatory. Key standards for metadata are: ISO/TC211 Geographical 
Information Metadata Standard, FGDC-STD-001-1998 Content Standard for 
Digital Geospatial Data, and ISO 15836 Dublin Core Metadata Element Set. 
While metadata will allow a user to assess the reliability of the data for use 
in a particular application and compatibility for integration with other data 
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sets, they may not be sufficient to assist users in assessing fitness-for-use 
after propagation of uncertainty during analyses, particularly because such 
an assessment is context-specific. It is in response to issues such as these that 
Hunter and Goodchild (1993) have developed an overall strategy for man-
aging uncertainty in spatial databases (Figure 8.29). Data and the system 
(hardware and software) are first evaluated for error separately and then 
evaluated again when combined to form an analytical product. These errors 
then need to be judged in context and communicated so that choices can be 
made by the user between error reduction (data or system upgrading) and 
error absorption (accepting the risk in some way).

This type of model, while structurally useful, leaves the specific methodol-
ogy to the user. What is needed is a conceptual framework that can act both 
as a strategy and direct specific methodology. The framework presented in 
Figure 8.30 is based on a communications model (Shannon, 1948; Bedard, 
1986) in which there must be sufficient flow of information in order to reduce 
uncertainty. In this case, not only does data about the real world need to be 
converted and communicated as information (by means of GIS) to a user/
decision maker, but there must also be sufficient communication about the 
quality of that information in order to reduce uncertainty in evaluating 
its fitness-for-use. The initial focus of the framework is on “context zero,” 
the original context in which data are collected, presumably in response to 
and as specified for a specific or related range of uses. In surveying the real 
world (or perceived reality), the observers are expected to record or gener-
ate measures of positional, thematic, and temporal uncertainty of their data 
in ways appropriate to the nature of the data being collected and the tech-
nology in use. Observers are likely to have their own professionally/cultur-
ally conditioned view of the real world and may well be distinctly different 
from the eventual users of the data. Truth in quality reporting at the highest 

Types of application

Error

Data Systems Products

Error Error

Types of decisions

Parameters for Consideration

Types of users

Yes

No

What significant
errors are in the

product?

How is error
best

communicated?

Is the product
error

acceptable?

Error absorption
techniques

Error reduction
techniques

Error models
quality reports

Error statistics
error visualization

Proceed with
decision

Figure 8.29
A strategy for managing uncertainty in spatial databases. (Adapted from Hunter, G.J., and 
Goodchild, M.F. (1993) URISA Journal 5 (2): 56–62.)
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possible resolution and the recording of metadata are, thus, important ele-
ments in judging reliability. Aggregate measures of quality may be produced 
and, where recorded in the metadata, will need to be referred to by the user. 
Nevertheless, these may not be sufficiently discriminating to give an indica-
tion of the spatial variability in quality. For extensive thematic layers com-
piled possibly by several observers or on different occasions, such variability 
is likely to be an important component in judging reliability and ultimate 
evaluation of fitness-for-use of GIS products. Therefore, observers should 
preferably record quality measures pertaining to individual objects or enti-
ties within a thematic layer, such as in the fuzzy set example above.

Where a number of thematic layers are to be used in an analysis, it may 
be necessary to integrate a range of quality measures in the propagation of 
uncertainty. Current research has focused on propagating a specific indi-
vidual quality measure (such as PCC, variances, or probabilities) common 
to all the thematic layers. Instead, the framework provides for a mapping, in 
the mathematical sense of f: X → Y, from a range of quality measures into a 
common propagation metric M. A prime candidate for M are fuzzy measures 
(fuzzy sets, fuzzy numbers) into which measures of possibility, plausibility, 
belief, certainty, and probability can be transformed (Graham and Jones, 1988). 
The use of M and accepted mappings into it would provide observers with 
greater flexibility in their choice of appropriate quality measures. Thus, the 
overall mapping from a domain of inputs to a set of real decisions becomes
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Figure 8.30
A communications-based framework for handling uncertainty and fitness-for-use in GIS.
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 f: Ω → ℜ  (8.17)

 f: Ωu → Ms → Mo → ℜu  (8.18)

where Ωu = uncertainty in the domain inputs, Ms = common propagation 
metric at the start of analysis, Mo = output metric at the end of analysis, 
Ru = level of uncertainty in the set of real decisions. As we have seen with 
fuzzy sets, the propagation of uncertainty through GIS analyses can result 
in a propagation metric, which is not easily intelligible to a user. It needs to 
be rendered intelligible through a second mapping from M to a fitness-for-
use statement or indicator that corresponds to the user’s real world model 
pertinent to the application. In this way, meaningful, application-specific 
visualizations of information quality can be generated and incorporated 
into decision making. SA allows the user to assess the robustness of the 
information quality and explore the contribution of individual thematic lay-
ers with specification for upgrade where necessary. The user is then able to 
evaluate overall fitness-for-use and take responsibility both for the use of 
the base data and for the use of the analytical outputs. Because the frame-
work provides the basis for handling uncertainty and evaluating fitness-for-
use, users can continue to take this responsibility in all subsequent contexts 
where the base data are made available for use. Data can have a long shelf 
life and evaluations of their fitness-for-use in applications should be made 
possible over their entire life. This framework is intended for implementa-
tion with existing data structures in GIS software. For software developers, 
it provides a framework on which to develop suitable functionality for the 
handling of uncertainty.
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9
Modeling Issues

In Chapter 8, we looked at a range of issues that arise from uncertainty in 
spatial data, the impact these can have on the analytical products of geo-
graphic information systems (GIS) and by implication on the accuracy of 
environmental simulations. We also saw how these issues might be man-
aged. Sources of uncertainty can be numerous (Figure 8.6) and can be dif-
ficult to disentangle. In Chapter 8, the influence of operational uncertainty 
was played down to concentrate on data issues. In a coupling of GIS and 
environmental simulation modeling (Chapter 7), operational uncertainty 
can derive from the nature of the algorithms in GIS and from the opera-
tion of the simulation model: choice of spatial discretization and time 
increment, fixing of parameters, algorithm choice, and calibration. These 
issues together can be classed as model-induced uncertainty. According to 
Burrough et al. (1996):

 Information = Conceptual models + data  (9.1)

and that the link between quality of information, models, and data can be 
expressed as:

 Quality [information] = f{quality [model], quality [data]} (9.2)

where “model” encompasses both GIS and environmental simulation model. 
The issue should not be underestimated. We have already seen the tension 
that exists between natural variation in the real world and the data models 
that we use in GIS and simulation models. Thus, data sets are only approxi-
mations of reality. Simulation models are also approximations as “very few 
Earth science processes are understood well enough to permit the applica-
tion of deterministic models” (Isaaks and Srivastava, 1989). And yet even if 
we wish to strive toward perfect models, how would we know when we have 
one because “verification and validation of numerical models of natural sys-
tems is impossible” (Oreskes et al., 1994). The answer to this dilemma does 
not necessarily lie in stochastic models because there are consequent prob-
lems in identifying appropriate probability distributions for all the param-
eters and then there is still the chestnut of verification. However, if we are 
modeling in the search for engineering solutions rather than purely for the 
pursuit of science, then we should take a sufficing approach in which the 
quality of the information need only be dependable in that it contributes 



264 GIS, Environmental Modeling and Engineering, Second Edition

toward an effective solution to some problem (Chapter 8). Thus, there is 
another variable to Equation (9.2)—professional judgment. But, this cuts two 
ways: first, in interpreting the significance of the analytical products that are 
the outputs to the environmental modeling process and, second, at an earlier 
stage in the very choice of data, data processing algorithms, type of simula-
tion model, setting of parameters, achieving an acceptable calibration, and 
so on. Equation (9.2) appears too deterministic as a good quality model, and 
good quality data in the hands of an inexperienced modeler may not give 
dependable results. Therefore, I would propose that:

 Dependable [information] = f{quality [model], quality [data],   
 experience [professional]} + ε	  (9.3)

where ε = residual uncertainty (but, not necessarily random error).
In this chapter, we will be looking at Equation (9.3) from the perspective 

of the right-hand side of the equation. Given the plethora of environmental 
simulation models used by a wide range of disciplines in a large number of 
situations, I would not be so presumptuous as to evaluate their performance 
and arrive at a critique of their quality. I leave that to each discipline to estab-
lish the means of consensus on the usefulness and applicability of its mod-
els. Users should make themselves aware of the assumptions and limitations 
of models before using them in support of decision making. Data quality 
issues have already been covered in Chapter 8. What does need to be looked 
at here are issues around models where professionals need to make choices. 
By the end of the chapter, I will tie this in with the data quality debate. In 
Chapter 10, then, we will be looking at Equation (9.3) from the perspective 
of the left-hand side, i.e., making decisions by dealing with any risk in the 
residual uncertainty.

Issues of Scale

Scale has doggedly pursued us through this book and, in GIS and environ-
mental modeling, you just can’t get away from it. In Chapter 2, scale was an 
issue affecting how we might model or represent features in GIS. Linked to 
this was the notion of the characteristic scale (in space–time) at which a par-
ticular natural phenomenon is manifestly measurable/observable. We also 
considered what the meaning of traditional cartographic scale might be for a 
digital data set without the constraints of the fixed dimensions of a piece of 
paper (Equation (2.2)); here, resolution was a key determinant. In Chapter 4, 
we identified an envelope of spatio-temporal domains for process modeling 
(Figure 4.9), which not only pointed to broad links between spatial and tem-
poral resolution in the construction of models, but that one process model 
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cannot fit all scales. In other words, there are theoretical limits to the scal-
ability of models. In Chapter 8, we considered the problems that arise from 
natural variation in that spatial units are invariably portrayed as being more 
homogenous than they are in reality. We also saw how the variogram can be 
used to measure spatial dependence, but also to describe the scales of spa-
tial variation observable within the data (Atkinson and Tate, 2000). We have 
already seen that in most simulation modeling there is a trade-off between 
data resolution and computation time (Chapter 5). There are also implica-
tions here for cost of data collection (cost-resolution modeling, Chapter 3) 
and the fitness-for-use of the modeling outputs. Practical decisions need to 
be made here, and it’s not always a case that smaller is better.

Sensitivity to scale and resolution in process models can be viewed slightly 
differently from the perspective of lumped parameter models and distrib-
uted parameter models. In the latter, the problem focuses on appropriate size 
of the cells within the grid or triangular mesh. In the former where spatial 
discretization is often implicit, there is nevertheless some spatial extent that 
is being modeled, which, for example, in hydrology will be catchment units 
and yet an area is almost infinitely divisible into catchment units. The ques-
tion of catchment size and grid size and their effect on parameterization and 
uncertainty in simulation results has been a focus of attention in hydrology 
for some time, particularly to separate out which environmental controls are 
scale dependent and which are not (for two reviews, see Wood et al., 1990 
and Clifford, 2002). This is not to play down the importance of other aspects 
of spatial variability, such as in rainfall (e.g., Arnaud et al., 2002), but it is now 
well established that there is a tendency for topographic variability to domi-
nate predicted spatial patterns of storm runoff, particularly for small catch-
ments. In progressively reducing the size of catchment area by discretizing 
to smaller subcatchments, the resulting increase in resolution should lead 
to a reduction in the variance in subcatchment response. This led Wood et 
al. (1988) to propose the existence of a threshold resolution or representative 
elementary area (REA) as the fundamental building block for catchment mod-
eling. The REA represents the critical resolution below which it is necessary 
to account for internal heterogeneity. This was found in their studies to be 
about 1 km2. For spatial units larger than the REA, only the statistical rep-
resentations of control variables (e.g., mean values) need to be known. This 
has implications for distributed parameter models where generally the dis-
cretization is less than 1 km2 and thus will require a fuller specification of 
the variables.

Zhang and Montgomery (1994) studied the use of a high-resolution digital 
elevation model (DEM) in two small catchments in order to study the effects 
of changing grid size on parameter estimation and simulation of hydrographs 
on very small catchments (1.5 km2). They found that the grid size of the DEM 
significantly affected both. They concluded that a 10 m grid size represented 
“a reasonable compromise between increasing spatial resolution and data 
handling requirements” for topographically driven models. Although, in 
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large drainage basins, the hydrograph will be dominated by channel rout-
ing, the influence of DEM grid size on the production of predicted runoff 
should be an important consideration in interpreting simulations. On the 
other hand, small grid sizes will undoubtedly raise problems concerning 
the accuracy of the DEM at that resolution with resultant errors in parameter 
determination propagating to the simulation. Bruneau et al. (1995) have also 
carried out a sensitivity analysis of grid size and time step on runoff simula-
tion for a 12 km2 catchment. They found that choices of grid size and time 
step were not independent and that there is an optimum region of values for 
model building. In their study, this was a grid size of less than 50 m and a 
time step of 1 to 2 h. Significantly, larger grid sizes with medium time steps 
were found to result in some parameter values to be meaningless, thus giving 
inconsistent runoff simulations. They also found that degraded outputs were 
more sensitive to larger time steps than to larger grid sizes. Molná and Julien 
(2002) have tested a distributed parameter model (CASC2D) on two basins of 
21 km2 and 560 km2 using grid sizes from 127 to 914 m. This becomes a case of 
needing less resolution to model larger features, particularly where compu-
tation time becomes intractable with smaller grid sizes. For the smaller basin, 
grid sizes up to 380 m were acceptable provided calibration was carried out 
to upwardly adjust overland and channel roughness coefficients. However, 
these grid sizes are approaching the REA (above). Grid size for the larger 
basin was found to be critical for shorter rainfall events where equilibrium 
conditions are unlikely to be met. This takes us straight back to Chapter 4, 
Figure 4.9: we can’t disentangle space–time and, by the same token, we can’t 
treat them in a disjointed way in our process models. Modeling large, rapid 
events is likely to require a different type of model.

While the above findings to do with scale have been explored in the con-
text of surface hydrology, the same broad relationships will apply equally to 
the modeling of other processes (Li, 2007). In Chapters 5 and 6, we looked at 
coastal oil spill modeling, first at the hydrodynamic modeling that distrib-
uted the tidal currents across the study area and then at the trajectory of the 
floating oil. One constituent of the trajectory model was the spreading action, 
mostly a random component, but dominated by the tidal and wind-blown 
currents. Modeled over 3 h on a 200 m grid, an oil spill drifted toward the 
coast to eventually make landfall on a beach (Figure 9.1(a/f)). Figure 9.1(g/l) 
is a further simulation using a 400-m grid. There are noticeable differences, 
but at the same time broad similarity—the oil still ends up on the same 
beach. The density values of cells are certainly different. The model has lost 
its resolving power for the smaller currents; if some oil just moves across a 
grid boundary, then it moves the full 400 m of the grid. At the same time, it is 
important not to go for a too fine of a grid. The interpolation of currents from 
the larger finite element network to the smaller trajectory modeling grid 
leads to a reduction in the size of the current component at each grid node 
because of the shorter step in the calculations. If the grid size gets too small, 
then the random component in the spreading starts to dominate over tide 
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and wind to produce an unacceptable result. The model becomes unstable. 
Hence, finer resolution is not necessarily more accurate.

There, of course, may be quite legitimate occasions when a fine resolu-
tion is needed, particularly in engineering design. The case study presented 
by Chen and Brimicombe (1997) and Chen et al. (1998) is of Arha Reservoir 
in Guizhou Province in southwest China. The capacity of the reservoir is 
44.5 million m3 and is the principal source of fresh water for Guiyang City. 
About 2,000 metric tons of suspended solids are transported into the reser-
voir from upstream annually, of which some 770 metric tons are Fe (iron) 

(b)(a)

(d)(c)

(f )(e)

SEA

LAND

Figure 9.1
An example of the consequences of changing grid size on oil spill trajectory modeling: (a) to (f) 
200-m grid, (g) to (l) 400-m grid. Continued
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and 50 metric tons are Mn (magnesium). Pollution of Fe and Mn has become 
a serious problem for the water supply of Guiyang City. The transport of 
these two heavy metals through the reservoir was modeled using a 3D res-
ervoir quality model on a 50-m grid and with five layers of depth each 4.5 
m thick and calibrated against 9 sample points where 22 days of records 
were collected. The objective was to study the concentrations of heavy met-
als not only throughout the reservoir, but also at the draw-off outlet from 
where the city got its water supply. The outlet is itself a relatively small fea-
ture in this large reservoir and would require a higher resolution of detail 
in order to adequately evaluate the problem. A 2-m grid would have meant 

(k) (l)

(j)(i)

(g) (h)

SEA

LAND

Figure 9.1
Continued.
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several orders of larger magnitude model to run and, in any case, would 
have become unstable. The solution was to run the 50-m model and use the 
results to construct a variogram for each metal in each of the reservoir layers 
around the outlet. This was then used to krige a 25-m grid that could then be 
checked by running the model again on a 25-m grid. With a close fit between 
the kriged and modeled results at 25 m, the kriging was used to interpolate a 
2-m grid around the outlet in order to study the concentrations of the heavy 
metals and their dynamics. This showed the outlet to be in an area of high Fe 
and Mn concentration, which could be ameliorated by extending the outlet 
farther into the reservoir and drawing off from the surface layer. This is an 
example of how GIS-based postprocessing of simulations can enhance the 
information content for decision making.

Another approach to testing model sensitivity to scale effects of discretiza-
tion is through fractals. A fractal is defined as a fractional dimension. We are 
well familiar with the definitions of a point, line, polygon, and solid as being 
0-, 1-, 2-, and 3-dimensions, respectively. But, suppose you were to draw a 1D 
line in a zigzag (ИИ) so close together that its final appearance was a 2D shape 
(█). At what point would the 1D line suddenly metamorphose itself into a 2D 
shape? Or can we work with the idea that as the 1D line gets increasingly 
sinuous and space-filling, so its dimension increases as a fraction from 1.0 (a 
perfectly straight line) to an upper limit of 1.99, that is, just short of being a 
2D shape. The same idea can be envisaged for a 2D surface being folded into 
an almost 3D shape. The concept of a fractal dimension was first introduced 
by Mandelbrot (1967; 1983) who argued that our traditional Euclidean view 
of dimensions was, in fact, a special case, just as we saw in Chapter 8 that a 
Boolean (0, 1) turns out to be a special case of fuzzy sets. Fractals have found 
application, for example, in the study of land form (Goodchild, 1980; Lam 
and Quattrochi, 1992) and urban form (Batty and Longley, 1994). Fractals can 
be measured by the Hausdorff dimension (Harris and Stocker, 1998):

 D N
s

= log
log

  (9.4)

where D = Hausdorff dimension, N = number of segments, s = the scaling 
factor by which the number of segments increase.

This can be illustrated by Koch’s curve (Helge von Koch, a Swedish math-
ematician, first described the properties of this curve in 1904), which is a self-
similar decomposition (Figure 9.2) in which progressively the middle third 
of every segment is removed and replaced by two new segments that form 
an angle of 60°. The dimension D is independent of the number of segments 
N and the scaling factor s. Thus, for the three decompositions in Figure 9.2, 
D remains 1.262. In other words, the self-similarity of the decomposition 
maintains the same fractal dimension of the line, although, as can be calcu-
lated, the length of the line increases by a factor of 4/3 with each successive 
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decomposition, while the Euclidean distance between the start and the end 
of the line (distance A, B) remains the same. With sufficient decomposi-
tion, the distance along Koch’s curve from A to B could approach infinity. 
Another self-similar pattern is the Peano scan in Chapter 2, Figure 2.12(b), 
which, because it is systematically space-filling of a 2D surface and contains 
self-similar recursions, has a D of log 15/log 4 = 1.953; it’s a line, but nearly 
a surface.

The decomposition of Koch’s curve is like discretization at increasing reso-
lution. This concept has been used by Li et al. (2000) to study the effect of 
shoreline resolution and roughness on the hydrodynamic simulation of tidal 
currents. The importance of this lies in accurately simulating the trajectory 
of oil onto a coastline while not over-discretizing with obvious cost implica-
tions for survey, nor inducing instability in the model. Thus, the exercise can 
be seen as cost-resolution modeling as well. Koch’s curve is too geometri-
cally regular to simulate a coastline, so a variant on the principle was used 
to produce a fractional Brownian motion (fBm) for a section of concave and 
convex coastline (Figure 9.3). If a white noise is a completely random series 
of frequencies f such that the mean square fluctuations are 1/f0, then the 
most common type of noise found in nature is 1/f and a Brownian motion 
is defined as a 1/f2 noise (Voss, 1988). An fBm can be viewed as a self-similar 
decomposition, but with a random element, a sort of random walk along a 
fractal dimension. Thus, from an initial straight coastline of 10 km, a complex, 
rough coastline can be calculated in a systematic way that would be repre-
sentative of increased resolution of the sampling. The effect on the hydro-
dynamic modeling is given in Figure 9.4. Remember from Chapter 6 that 
U is the northerly component of the computed tidal current, V the easterly 

log41

log31
= 1.262

log42

log32 = 1.262

Length = 6 × (4/3)1 = 8

Length = 6 × (4/3)2 = 10.67

log43

log33 = 1.262

Length = 6 × (4/3)3 = 14.22

Figure 9.2
Koch’s curve with self-similar decomposition.
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component, a the current speed, and g the direction. Given that our coastline 
is in the north of the model, Vg will be most affected because this component 
running along the shoreline is the most sensitive to the changing resolution. 
From the graphs in Figure 9.4, when the simulated sampling step-size is less 
than 2.5 km, the statistical properties (mean and standard deviation) of all 
the current components have stabilized. A shoreline sample interval of 2.5 
km, therefore, can be taken as the minimum survey requirement in order to 
have a stable tidal current simulation.

The final aspect of scale to be considered here is aggregation. Aggregation 
is the act of joining smaller spatial and/or temporal units into larger units 
of coarser resolution. There may be several reasons for doing this mostly 
based on the need to reduce complexity. One reason might be to simplify 
inputs and outputs so as to ease the modeling burden (or even to make 
modeling feasible) or in “scaling up” models from local to regional levels. 
Another might be to reduce the level of noise often present at a higher reso-
lution, thus allowing patterns and relationships to “emerge.” Yet, a third 
reason for aggregation is that policy makers would like to see the “broad 
picture” rather than all the scientific detail. Aggregation, however, is not 
without its inherent problems, often referred to in geography as the modifi-
able areal unit problem (MAUP) (Batty, 1974; Openshaw and Taylor, 1981; 
Fotheringham and Wong, 1991; Amrhein, 1995). The dual of the MAUP is 
the ecological fallacy (Robinson, 1950). Both of these can best be explained 
through the use of a simple example. In Figure 9.5(a) and Figure 9.5(c) are 
mapped the percentage cover of two species of plants that tend to thrive 
under the same conditions and would be expected to be correlated. The per-
centage cover is mapped by quadrat and then by different zone aggregations 

(a)

(b)

Figure 9.3
Synthetic convex and concave shorelines generated using fractional Brownian motion (fBm). 
(From Li, Y. (2001) Spatial data quality analysis in the environmental modelling. Unpublished 
PhD dissertation. University of East London, U.K. With permission.)
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of those quadrats. The most detailed representation is 25 quadrats (N = 25), 
but these have then been aggregated to 7 zones (N = 7) and then to 4 zones 
(N = 4). What is more, a choice of two zone arrangements are offered for N 
= 7 and N = 4. The series N = 25 through N = 4 will give scale effects, while 
differences between the choice of zones at N = 7 and N = 4 will give zone 
effects. Figure 9.5(b) and Figure 9.5(d) show summary statistics for all maps. 
The noticeable trend is that the mean value percentage covers for both spe-
cies stays roughly the same, whereas the variance s2 generally declines as 
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Effect of increasing shoreline resolution on the mean and standard deviation of simulated tidal 
components. (From Li, Y. (2001) Spatial data quality analysis in the environmental modelling. 
Unpublished PhD dissertation. University of East London, U.K. With permission.)
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the number of zones decreases. This is the scale effect. The difference in 
variance that occurs between the two maps for N = 7 and N = 4 are influ-
enced by the specific arrangement of zones in relation to the original data. If 
we now look at the relationship between the two plant species, we can cre-
ate regression models and calculate correlations to study the effect on these 
of scale and zoning (Figure 9.5(e)). Here the map cross-correlation (MCC) has 
been used:

 MCC
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  (9.5)

where Ai and Bi = values of spatial elements i in maps A and B, A  and B  = 
average values for maps A and B.

Here again we can see scale and zone effects primarily due to a reduc-
tion in variance. In general, with aggregation, both correlation and R2 will 
tend to rise. However, as can be seen from the zone effect, the scale effect 
is not exactly predictable. Looking at Figure 9.5 from N = 4 back to N = 25 
reveals the ecological fallacy; patterns and relationships at a higher level of 
aggregation cannot be directly inferred on a lower level of aggregation nor 
attributed to an individual. Looking again at Figure 9.5(a) and Figure 9.5(c), 
very few of the values that appear in N = 7 or N = 4 appear in N = 25, just as 
you can’t find an average family with 2.2 children. This has some potentially 
serious impacts on the way in which we manipulate scale and zone data. For 
example, empirical regression models can be made to have a better fit (R2) 
through aggregation. Clearly, as a general rule, analyses and models should 
be built from appropriate resolution data but, as already stated, there may be 
very valid reasons for having to aggregate. Bian and Butler (1999) have stud-
ied the effects of aggregating data necessary for moving from local models to 
regional or even global models. In such “scaling up,” the original spatial data 
needs to be reduced to a smaller number of units each covering a larger area. 
The output of such models may be adversely affected by the altered statisti-
cal and spatial characteristics of the data. They studied the effects of three 
aggregation modes: using the average, the median, and the value of the pixel 
or cell central to the aggregated unit. The average and median methods were 
able to maintain the mean and median of the original data across the full 
hierarchy of aggregation, although the variance in the data was significantly 
reduced. This basically conforms to our example above. The central pixel 
method, however, performed poorly in maintaining the central tendency of 
the data, while increasing somewhat the level of variance. Whereas the mean 
and median methods tended toward increasingly homogeneous data, the 
central pixel method was better able to maintain basic spatial patterns within 
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Illustrative example of the modifiable areal unit problem; see text for details: (a) to (e).
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the data. Once again, the variogram of the original data can inform appro-
priate aggregation levels so that they fall within the autocorrelation range in 
an attempt to confine the magnitude of uncertainty that might result. Van 
Beurden and Douven (1999) have studied the problem of aggregating for pol-
icy making and political decisions about the regulation of pesticides. They 
considered two approaches:

 1. Input aggregation: Local data are first aggregated and then the model 
is computed at a national level.

 2. Output aggregation: The data at the higher resolution are first used in 
the model and the results are subsequently aggregated.

This implies that a scalable model is being used. In this case, a pesticide 
leaching model is used to calculate the ratio of predicted environmental concen-
trations (PECs) to no effect concentration (NEC). A PEC/NEC ratio of greater than 
one indicates hazardous areas. The specifics of the aggregation were from a 
2.5-km grid through to municipalities and provinces in The Netherlands. Two 
methods of aggregation were used: aggregation by the mean and aggrega-
tion by the worst case. The results are shown in Figure 9.6(a/b). Aggregation 
by worst case gave consistent results for both input and output aggregation, 
but over exaggerated the level of hazard at municipal and provincial levels. 
Aggregation by mean gave contrasting results for input and output aggrega-
tion with input aggregation resulting in an under exaggeration of the hazard. 
Certainly in all cases valuable information on spatial variability is lost. Since 
the results of any similar study are likely to be sensitive to model type, the 
spatial data model and the aggregation method, van Beurden and Douven 
recommend that the aggregation sensitivities be tried out before handing 
results to policy makers.

Issues of Algorithm

Any user of GIS and environmental models often has a bewildering choice 
of algorithms to choose from. Of course, not all competing algorithms are 
implemented in every software package and, for some proprietary software, 
information on the exact algorithms being used may be sparse, sometimes no 
better than a vague hint. Nevertheless, algorithm choice does often present 
itself and making the right choice can be important for successful modeling. 
As we saw in Chapter 4, the success or otherwise in using inverse distance 
weighted (IDW) interpolation (as one algorithm) rested on choice of param-
eters (such as r, Figure 4.13) and even the data sampling pattern (Figure 4.12), 
so choice between competing algorithms is not a clear-cut case, as it also 



278 GIS, Environmental Modeling and Engineering, Second Edition

depends on how you use them in relation to the application and the available 
data. Nevertheless, professionals should acquaint themselves not only with 
the range of algorithms that are available together with their advantages 
and disadvantages for use in particular situations, but should also be able 
to understand at least the broad consequences of fitness-for-use. Staying 
with the interpolation example, a popular alternative to IDW is triangulated 
irregular network (TIN; Chapter 2, Figure 2.11) and, in Chapter 8, we used 
kriging on the rainfall data. We can briefly compare the performance of these 
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Figure 9.6
Comparison of input and output aggregation strategies: (a) aggregation by mean, (b) aggre-
gation by worst case. (Adapted from van Beurden, A.U.C.J., and Douven, W.J.A.M. (1999). 
International Journal of Geographical Information Science 13: 513–527.) Continued
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three data sets. To recall, Figure 9.7(a) shows the mathematically computed 
topography with 10-m contours and 50-m shading. Figure 9.7(b) shows the 
purposive sampling of 25 points plus the four corner points to bring interpo-
lation to the edge of the study area without extrapolation outside the convex 
hull subtended by the sample points. Figure 9.7(c/d) shows the results we 
previously gained for IDW where r = 4 (shaded every 50 m with original 
contours superimposed for comparison) together with the distribution of 
residual errors giving a root mean square error (RMSE) of ±19.5 m. Figure 9.7(e) 
shows the results of an interpolation using TIN (again shaded every 50 m 
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with original contours superimposed for comparison) with residual errors 
in Figure 9.7(f) giving an RMSE of ±26.9 m. For this purposive sample where 
points have been placed to pick out as best as possible local maxima and 
minima on the surface, TIN for the most part is quite good. The problem that 
has arisen and is contributing to the high RMSE is with very slim triangles 
being formed along the boundary truncating the ridgeline. For this reason, 

Residual Error
High positive

Low residual

High negative

Elevation

(a) (b)

(c) (d)

50–100
100–150
150–200
200–250
250–300
300–350
350–400

Figure 9.7
Comparison of IDW, TIN, and kriging methods of interpolation: (a) mathematically computed, 
(b) sample, (c) IDW with (d) residual errors, (e–f) TIN and residual errors, (g–h) kriging and 
residual errors. Continued
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the convex hull resulting from the triangulation of sample points should 
preferably fall well outside the study area boundary so that this effect can 
be ignored. TIN tends to produce rather rectilinear-looking results because 
each triangle is treated as a plane. For this reason, TIN is not very good on 
sparse data sets. Figure 9.7(g) shows the results of kriging using a spherical 
variogram model with residual errors in Figure 9.7(h) giving an RMSE of 
±15.7 m. Although still not a very good result in relation to the original map, 
kriging has given the best result of the three and providing that the vario-
gram can be properly constructed and fitted, this geostatistical approach is 
finding increasing favor among modelers. The point to be made, however, is 
that all interpolations are approximations and depending on the nature of 
the sample data and the phenomenon to be modeled by interpolation, the 

(e) (f )

(g) (h)

Figure 9.7
Continued.
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modeler needs to exercise considerable skill in achieving a best fit particu-
larly where (and unlike the above examples) no “truth” model is available 
for immediate comparison. For a review of interpolation methods, see Lam 
(1983), Burrough and McDonnell (1998), or de Smith et al. (2007).

Another area of algorithm choice worth looking at in relation to quite a 
number of environmental simulation models that use routing over a DEM, 
is calculation of maximum gradient. Within the mapping sciences and GIS, 
such algorithm choice has been an ongoing debate (e.g., Skidmore, 1989; 
Srinivasan and Engel, 1991; Hodgson, 1995; Jones, 1998; Schmidt et al., 2003). 
The problem is that there are so many variant algorithms—at least 12 to my 
knowledge—that objective comparison becomes a lengthy task. Calculation 
of gradient is usually carried out from a grid DEM and, because it cannot be 
based on a single grid cell value of elevation, a surrounding group of cells 
need to be used. This is usually restricted to a neighborhood 3 × 3 matrix of 
cells centered on the cell for which gradient is being calculated. Not all meth-
ods use all the neighboring cells within this matrix. A larger neighborhood 
could be used, but this might introduce unacceptable smoothing. Based on 
this 3 × 3 matrix, there are two broad groups of approaches: (1) those based 
on finite difference techniques (e.g., Sharpnack and Akin, 1969; Horn, 1981; 
Ritter, 1987) and (2) those based on calculating a best fit surface (e.g., Evans, 
1980; Zevenbergen and Thorne, 1987). These are different approaches to esti-
mating the mathematical slope of a surface G that can be calculated by find-
ing the partial derivatives in the x and y direction as follows:
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To illustrate some of the finite difference solutions, consider the 3 × 3 matrix 
of cells in Table 9.1 in which elevations are coded z0 through z8.

Table 9.1

Cell Coding for Finite Difference Calculation of Gradient

↑
Y

z5 z2 z6

z1 z0 z3

z8 z4 z7

X →
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A second-order finite difference method utilizes only four cells adjacent to 
the target cell (Ritter, 1987):
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A third-order finite difference method uses all the 3 × 3 neighbors 
(Sharpnack and Akin, 1969):
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A variation on this method proposed by Horn (1981) and commonly 
implemented in GIS software, additionally weights the second-order neigh-
bors thus:
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An example of surface fitting to all nine elements in the 3 × 3 matrix is to fit 
a least-squares plane (first-order polynomial) in the form:

 z = β0 + β1 x + β2 y + ε  (9.15)

such that if the error term ε is ignored, β1 and β2 can be directly substituted 
into Equation (9.8). Quadratic fitted surfaces (Evans, 1980) take the form:

 z = β0 + β1 x + β2 y + β3 x2+ β4 y2 + β5 xy + ε  (9.16)
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when the error term ε is ignored. This is only a selection of methods, and 
there are other variants. Skidmore (1989) tested six methods including all of 
the above. Srinivasan and Engel (1991) tested four methods including Horn’s, 
best-fit plane, and quadratic surface. Jones (1998) tested eight methods includ-
ing all of the above except the best-fit plane. Skidmore, and Srinivasan and 
Engel both use 30 m DEM of natural terrain. Skidmore checked computed 
gradients against hand calculations from map contours. Srinivasan and Engel 
evaluated their computed gradients through its use to calculate the length of 
slope and steepness of slope factors in the Universal Soil Loss Equation for 
which observed values were available. Jones used a synthetic surface (simi-
lar to our example topography, but generated from a 49-term polynomial) 
and different relative grid sizes for which true values could be known by 
numerical methods. The results on the synthetic surface for Formula (9.11) to 
Formula (9.18) above showed that the second-order finite difference (Ritter) 
performed best overall followed by Horn and Sharpnack and Akin, and then 
the quadratic surface. Increasing accuracy followed decreasing grid size. 
When the synthetic surface was rotated, Ritter’s showed greater sensitivity 
to rotation angle than the other methods, which becomes more pronounced 
as grid size is reduced. Nevertheless, the RMSE remained lower at all times 
for Ritter’s than for the other methods. Skidmore found a statistically signifi-
cant correlation between all methods used and the “true” gradient. However, 
the finite difference approaches yielded lower correlations with Ritter and 
Sharpnack and Akin giving the worst results. Skidmore also noted that spu-
rious gradients could be calculated regardless of method in areas of flat or 
near flat terrain. This has important implications, for example, for routing 
in floodplain areas. Finally, Srinivasan and Engel found that Horn’s finite 
difference approach was more accurate on flatter slopes than on steeper 
slopes where the 3 × 3 matrix covered too great an area in relation to the 
length of slope on steeper sections, and was nevertheless the most accurate 
overall. Differences in algorithm can make a difference of up to 286% on the 
calculation of the length of slope and steepness of slope factors with consid-
erable variability all around. They conclude that “careful selection of slope 
prediction method is recommended.” These three studies from a compara-
tive perspective have some contrasting results on which method might be 
better, but from another aspect there is a close agreement, like the interpola-
tion algorithms, each method of calculating gradient will yield a different 
result. For some simulation models the effect may be negligible, for others 
it may be more important. Where there is likely to be model sensitivity, that 
sensitivity should be tested.

A further example of how algorithm choice can be problematic occurs 
when preparing data for use in an artificial neural network (ANN). Usually 
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the data are transformed in the range [0, 1] or [1, 1] and there are a number 
of methods of doing this that fall under three broad categories: linear trans-
formation, statistical standardization, and mathematical functions. Linear 
transformation is simpler and appears to be most frequently used. There is 
often little guidance as to which method would best suit the type of data 
being used and little in the literature to suggest that it matters. However, the 
results of Shi (2000) show that it does matter with improvements in model 
performance by up to 50% for synthetic trials and up to 13% on a real case 
study depending on the type of transformation used.

Issues of Model Structure

When working either in a geocomputational mode or in complex modeling 
situations, it is unlikely that the scientist or professional will be working with 
just a single tool. It is likely instead that several different tools are used. The 
way these are configured and pass data may have important influences on 
the outcome. In Chapter 6 and subsequently, we have seen how in coastal 
oil spill modeling there are, in fact, three models that cascade. Initially there 
is the hydrodynamic model that from bathymetric, shoreline, and tidal data 
calculates the tidal current over the study area using finite element method 
(FEM). In the next stage, these tidal currents together with other data, such 
as wind and the properties of the particular type of oil, are used in the oil 
spill trajectory model. The trajectory model is a routing model requiring only 
arithmetic calculation and, therefore, is carried out on a grid. However, this 
requires a reinterpolation of the tidal current from a triangular network to a 
grid. As we have noted above, not only is there algorithm choice for reinterpo-
lation, but that there is likely to be some level of corruption of the output data 
from the hydrodynamic modeling as it is transformed to a grid by the chosen 
interpolation algorithm. Experiments by Li (2001) have shown that errors in 
the bathymetry and tidal data will be propagated and amplified through the 
hydrodynamic modeling and affect the computed currents. Interpolation of 
those currents to a grid further degrades the data by increasing the amount 
of variance by about 10%. This is then propagated through the next stage of 
modeling. These are inbuilt operational errors that are a function of overall 
model structure. Because different components or modules within the overall 
modeling environment work in very different ways such that they cannot 
be fully integrated but remain instead tightly coupled, then resampling or 
reinterpolation becomes necessary. Both model designers and model users, 
however, should be more aware of and try to limit the effects.

Another aspect of model structure that is hard to guard against is inad-
vertent misuse. While blunders, such as typographic errors in setting 
parameters, are sure to occur from time to time and will normally manifest 
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themselves in nonintuitive outputs, there are subtle mistakes that result in 
believable but wrong outputs. In hydrodynamic modeling, for example, the 
forced tidal movement at the open boundary requires a minimum number of 
iterations in order for its effect to be properly calculated throughout the study 
area. For a large network with many thousands of elements in the triangular 
mesh, this may take many iterations at each time step. The model usually 
requests of the modeler the number of iterations that should be carried out; 
too many can be time consuming for a model with many thousands of time 
steps, but too few can give false results. Figure 9.8(a/b) shows the results of 
hydrodynamic modeling for an adequate number of iterations at 0 h and at 2 
h. The tide is initially coming in and then starts to turn on the eastern side of 
the study area. In Figure 9.8(c/d), the exact same modeling has been given an 
insufficient number of iterations at each time step to give the correct answer. 

(a) (b)

(c) (d)

Figure 9.8
An illustration of the consequences of allowing insufficient iteration in hydrodynamic model-
ing. (See text for explanation.)
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After 2 h, the tide continues to flow in and has not turned. The result of this 
error on the oil spill trajectory modeling can be seen in Figure 9.9. This can 
be compared for half-hourly intervals against Figure 9.1(a/f), which uses the 
correctly simulated tidal currents. With an insufficient number of iterations, 
the oil spill ends up in quite a different place and may adversely affect deci-
sion making.

In agent-based modeling there is a different, but by no means less complex 
set of issues in assessing the validity and usefulness of the results (Batty and 
Torrens, 2005; Li et al., 2008). In Chapter 5, we identified how agent-based 

(d)(c)

(a) (b)

(e) (f )

SEA

LAND

Figure 9.9
Knock-on effect of Figure 9.8 on oil spill trajectory modeling for half-hourly intervals up to 3 h. 
(Compare with Figure 9.1(a/f)).
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models could have many thousands of agents all programmed with micro-
level behaviors in order to study the macro patterns that emerge over time 
from these behaviors (Figure 5.15). It is this level of geographical complexity 
and emergent behavior that raises methodological challenges in validating 
them (Amblard et al., 2005; Manson, 2007). Aspects for consideration include 
the stability or robustness of the emergent patterns, possible equifinality 
of emergent patterns from different initial states, boundary conditions and 
parameter values, different emergent patterns depending on parameter val-
ues, nonlinear responses to parameter change, and the propagation of error. 
In order to illustrate a nonlinear response to incremental changes in a param-
eter, Figure 9.10 shows emergent patterns after 200 iterations of the Schelling 
three-population model implemented as cellular automata (CA). Only one 
parameter has been changed—minimum neighborhood tolerance—that has 
been incrementally increased by 10%. Each final state at 200 iterations has 
been quantified using a global Index of Contagion (O’Neill et al., 1988), as 
implemented in FRAGSTATS (http://www.umass.edu/landeco/), which 
measures the level of aggregation (0% for random patterns, 100% where a 
single class occupies the whole area). As illustrated in Figure 9.10, between 
a parameter value of 20% and 30% is a tipping point after which a high 
level of clustering quickly replaces randomness. As the parameter is further 
increased, so there is a nonlinear return to randomness. Such a sensitivity 
analysis (see the next section: Issues of Calibration) is the usual approach to 
exploring the robustness of the solution spaces, but in models where there 
are many parameters, the task can quickly become intractable. Li et al. (2008) 
have proposed the use of agent-based services to carry out such sensitivity 
analysis and model calibration of multiagent models; in other words, using 
the power of agents to overcome the complexity of using agents. The same 
approach can be used to explore all parameter spaces in n-dimensions to 
discover all possible emergent patterns of interest.

Issues of Calibration

This is a contentious and thorny issue. Calibration is the process of adjusting 
model parameter values to obtain a closer fit between observed and simu-
lated variables. The issue is contentious from two main perspectives. First, 
some may say that if the model has been properly constructed to adequately 
represent the processes being simulated and the parameters have been 
properly measured and applied, then calibration should not be necessary. 
Allied to this is a further notion that calibration is the act of finding the 
“fiddle factors” that force a model to be correct when, in fact, it isn’t and 
perhaps either the wrong model was chosen for the circumstances or the 
model needs instead to be rethought. The issue is thorny because there are 
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Figure 9.10
Sensitivity analysis of emergent patterns (after 200 iterations) for a three-population Schelling 
model implemented as CA, based on incremental changes to minimum neighborhood toler-
ance: (a) to (e) emergent patterns at parameter values of 20, 30, 50, 70, and 80%; (f) the effect 
measured using Index of Contagion at 10% increments. (Based on Li, Y., Brimicombe, A.J., and 
Li, C. (2008) Computers, Environment and Urban Systems 32: 464–473.)
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very few industry-standard guidelines for model calibration (Whittemore, 
2001). And then, how does a modeler know when the calibration is good 
enough and the model fit-for-use? For calibration to be possible, there must 
be data. This is often part of the problem as the observed data for variables 
being simulated may be sparse (spatially and temporally), may have ques-
tionable accuracy (interpolated?), may not be continuous, may even be just 
inaccessible (bureaucracy, confidentiality), or deemed too expensive to col-
lect. Without adequate data on which to base a calibration, applying simula-
tion models can become an act of faith. So, even the simplest of simulation 
models need some form of calibration. There are a number of reasons why 
simulation outputs do not fit observed data and, hence, the justifiable need 
for calibration:

Models are only approximations of reality and are therefore unlikely •	
to produce a perfect fit (Chapters 4 and 5).
Models are often expensive to create and test, new software is •	
expensive to buy and maintain, so models have a considerable 
“life span” and get reused on many studies where conditions, 
due to natural variation, are unlikely to match those for which 
the model was originally constructed and tested; users also have 
an inertia in changing from a familiar model to one in which they 
are less familiar.
Models may get reused at scales for which they were not originally •	
constructed and tested (see issues of scale above).
Data upon which parameter estimation is based are unlikely to be error •	
free (Chapter 8) and may in addition have operational uncertainty 
induced either through GIS handling and/or in the simulation.
Observations used in calibration are unlikely to be error free •	
(Chapter 8).
Field data on, for example, soil strengths or infiltration rates repre-•	
sent only the micro properties of the materials measured over areas 
of less than 1 m2 and may not represent the meso or macro behavior 
of the materials.
The initial state of the system and boundary conditions are thus •	
unlikely to be known precisely and even the most carefully deter-
mined parameters are likely to be best estimates.
The processes being modeled may have chaotic tendencies such that •	
what appear to be the same inputs (within our ability to specify and 
measure) may not consistently produce the same response (but, this 
would be an indication that a stochastic rather than a deterministic 
model might be preferable).
The processes may exhibit •	 nonstationarity where the relationship 
over time between inputs and outputs may change in response to 
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other evolving changes in the system; in Chapter 4, Figure 4.4, for 
example, we looked at the reduction in the factor of safety (FoS) of 
a slope over time in response to weathering such that the reduction 
in factor the FoS in response to a storm event will change as the soil 
gets progressively weaker.

Taking all into consideration, the odds are that a simulation will initially 
not fit the observed data well; in fact, so much so that a good fit would indeed 
be a surprise that might even turn to suspicion.

So, why is the act of calibration so problematic? As we shall see, good model 
calibration is as much an art as it is a science, perhaps more so since you need 
a “feel” for the model, the processes being modeled, and the situation in 
which it is being applied—a “feel” that is both intuitive and inspirational. 
However, first there needs to be some measure of fit between simulated and 
observed (such as the RMSE in Chapter 4) and these are usually based on the 
empirical variance of residual errors:
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where σe
2  = variance of the residual errors, vi  = observed value of the simu-

lated variable, vi  = expected value of the variable, n = number of observa-
tions or time steps.

One easily applied goodness-of-fit measure based on the variance of residual 
error is called modeling efficiency E, as defined by Nash and Sutcliffe (1970):
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where σo
2  = variance of the observations.

Similar to a correlation coefficient, E = 1 indicates a perfect fit. This may 
not be the most suitable way of calculating goodness-of-fit for some types 
of models where small time lags can dramatically increase σe

2  for oscillat-
ing variables or where the residuals are strongly autocorrelated in space 
and/or time (for a comparison of a range of goodness-of-fit statistics, see, for 
example, Fotheringham and Knudsen, 1987). Then a choice needs to be made 
about which parameters might usefully be varied to produce the desired 
changes toward a better goodness-of-fit. A local sensitivity analysis, such as 
OAT (one-at-a-time) might allow the sensitivity of the model to individual 
parameters to be quantified and ranked and also allow an observation to be 
made as to how each parameter influences model behavior. One measure of 
sensitivity Si is (Saltelli et al., 2000):
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where xi = value of a parameter i, xib = baseline value of parameter i, v = value 
of the simulated variable, vb = baseline value of the simulated variable.

If all parameters are varied by the same amount (e.g., ±5%), then the rela-
tive importance of parameters can be evaluated. But what sounds simple 
quickly gets quite complicated. First of all, assessing what contribution a par-
ticular changed parameter has had on the overall outcome of the simulation 
can be difficult. This is because many environmental simulation models are 
nonlinear. If they were linear, then inputs would have linear relationship to 
outputs. But, this is rarely the case. In hydrology, for example, antecedent 
conditions have an important role in determining the relationship between 
inputs and outputs for any one storm. This produces a nonlinear relation-
ship between inputs and outputs and because antecedent conditions vary 
(and may not be well measured), a unit of input may not consistently pro-
duce the same unit of output for all time steps. Another cause of nonlinear-
ity is nonstationarity, which was already mentioned above. Second, when 
GIS are coupled with simulation modeling, there is the added consideration 
of what preprocessing took place to establish parameter values and what 
postprocessing might have taken place to reach the calibration stage (as, for 
example, in the basin management planning example in Chapter 6). If there 
were algorithm choices (see above), then for a proper evaluation, some dif-
ferent approaches may need to be tried and then tested for sensitivity as in 
Equation (9.21). Third, such a strategy may be tractable for a small number 
of parameters, but where there are a large numbers of parameters such sen-
sitivity analyses could take weeks or even months. Such a strategy is based 
on the premise that there is a single global optimum in the parameter space 
that can be found by varying the parameters for which the model is most 
sensitive such that a best fit with observations can be found. If this is the case 
and the number of parameters are few, then all well and good. But, unfor-
tunately, as summarized by Beven (2001), there may not be a single global 
optimum, but a series of local optima instead. This would mean having to 
accept that there is equifinality in the solution, that is, there may be a number 
of model states that are acceptably consistent with the observed behavior of 
the processes being modeled. Therefore, it may be better to think of corrobo-
ration in which there is a noncontradiction between the output of a model 
and the evidence from reality (Oreskes et al., 1994).

In the absence of a single global optimum and without an a priori knowl-
edge of the parameter space (for multiple interacting parameters), the safest 
approach, though often time consuming, is to fall back on techniques based 
on Monte Carlo (MC) simulation. The theoretical basis of MC has already 
been discussed in Chapter 8 with illustrations there and in Chapter 6. One 
such tool is the “generalized likelihood uncertainty estimator” (GLUE) of 
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Beven and Binley (1992). In GLUE, random parameter sets are generated 
from a prior distribution of parameter values. Each of these is input to the 
model and the results compared with the calibration data. Outcomes that 
produce a better fit against the calibration are weighted by a likelihood 
measure (probability, belief) and all outcomes with a likelihood measure of 
greater than zero contribute toward a cumulative weighted distribution of 
outcomes. From this, upper and lower bounds to the model outcomes can 
be established as well as quantiles. While versatile in the type of likelihood 
function used, GLUE is computationally intensive. It is nevertheless effective 
in establishing prediction limits on the basis of the calibration data and the 
parameter ranges modeled.

Bringing Data Issues and Modeling Issues Together

Digital spatial data sets have grown rapidly in scope, coverage, and volume 
over the last decade. We have moved from data-poverty to data-richness. On 
the other hand, environmental models have steadily grown more complex, 
are more frequently used, are expected to deal with larger data volumes, 
and give better predictions over a wider range of issues from local to global 
scales. The abundance of digital data is leading to its own set of problems 
in identifying and locating relevant data and in evaluating choices of reso-
lution, coverage, provenance, cost, and conformance with the models to be 
used. Furthermore, for environmental models it may not be so much the 
characteristics of the raw data that are the most critical, but their character-
istics once converted, aggregated, and implemented in the model. Given that 
a modeling task may access data from multiple sources, there is the added 
difficulty of assessing combined performance in relation to the implemen-
tation of the simulation such that outputs have fitness-for-use. Then there 
are the modeling issues of choosing appropriate space–time discretization, 
data transformations, algorithms where choice presents itself. Finally, as we 
have seen, there are difficulties in achieving an adequate calibration. Clearly, 
tools are required in order to help resolve the data and modeling issues dis-
cussed over the last two chapters. Should such tools be part of GIS or built 
into the environmental simulation model? Given the trajectory that we are 
on toward tool coupling strategies where the network is the core technology 
(Chapter 7, Figure 7.5 and Figure 7.10), neither approach need be the solu-
tion. Instead, in order to meet the diversity of requirements just listed, with 
sufficient flexibility, a wide range of functionality from different sources 
could be tightly coupled to form a quality analysis engine (QAE), as suggested 
by Li et al. (2000) and as an agent-based implementation by Li (2006). There 
now exists a richness of public domain and proprietary software, which can 
be used for various aspects of quality analysis. Varekamp et al. (1996), for 
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example, have already demonstrated the availability and efficacy of public 
domain geostatistical software, such as GSLIB (Deutsch and Journel, 1992), 
PCRaster (http://pcraster.geog.uu.nl/), and GEO-EAS (ftp://eliot.unil.ch), to 
which could be added GSTAT (http://www.gstat.org); further tools, such as 
GLUE (www.es.lancs.ac.uk/Freeware/Freeware.html), discussed above, and 
spatial analysis tools, such as GeoDa (http://geoda.uiuc.edu/). A wealth of 
proprietary software is also available. Given the speed, sophistication, and 
growing interoperability of these tools there is little reason to invest in reim-
plementing these tools within GIS or environmental models, but instead to 
couple them within a process architecture, as suggested in Figure 9.11. Here 
GIS and environmental models are portrayed largely in their de facto rela-
tionship, whereby GIS integrate and preprocess spatial data inputs for simu-
lation models and postprocess and present for visualization the simulation 
outputs. The QAE is a series of tightly coupled tools, which depending on the 
type of modeling being undertaken might include exploratory data analysis, 
statistics, geostatistics, interpolators, zone designers, cluster detectors, MC 
analysis, and tools for simulating synthetic data sets and error surfaces. GIS 
would have a role in initializing the QAE with spatial data and assisting in 
the visualization of results. Much of the interaction is then between the tools 
of the QAE and the environmental simulation model in a stimulation and 
response mode in order to carry out both uncertainty analysis and sensitiv-
ity analysis of both data and model components. By using simulated syn-
thetic data, for example, key issues around data quality, discretization, and 
model performance can be studied and understood at project inception stage, 
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Figure 9.11
Process architecture for a quality analysis engine (QAE). (Based on Li, Y., Brimicombe, A.J., and 
Ralphs, M.P. (2000) Computers, Environmental and Urban Systems 24: 95–108.)
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as illustrated above in establishing minimum sampling requirements using 
fractalized shorelines (see Figure 9.3). Using the tools of the QAE, the effects 
of algorithm choice could also be explored as well as analysis in support of 
calibration. In as much as research in this area is ongoing, there are already 
sufficient QAE components on the market and in the public domain together 
with programming languages like Visual Basic that allow the creation of 
wrappers, for environmental modeling and GIS professionals to proceed 
with their own implementations in support of their specific requirements.
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10
Decision Making under Uncertainty

In Chapter 9, Formula (9.3) expressed fitness-for-use of analytical outputs as 
a function of model, data, and the professional where each of these is a set 
of entities. Throughout this book, we have been progressively looking at the 
mapping:

 f : Ω → ℜ  (10.1)

which in this last chapter can be expressed as:

 f : Ωu u→ ℜ  (10.2)

where Ω = set of domain inputs, ℜ = set of real decisions, u = uncertainty.
In Chapter 8, we looked at the issues surrounding data uncertainties and 

the evolving strategies for knowing and reducing the level of uncertainty 
in spatial data, the analytical products of GIS, and inputs to environmental 
simulation models. However, as Frank (2008) has observed, it is “difficult to 
observe directly the effect of data quality on decisions.” While good data 
= good decisions is a common-sense belief, there are, as we have seen, so 
many intermediate steps between data collection and model output—the 
transformation of data into information and understanding—that better data 
do not necessarily lead to better decisions. In Chapter 9, we considered a 
range of issues in model uncertainty and, again, the evolving strategies for 
knowing and reducing the level of uncertainty in the outputs of GIS and 
environmental simulation modeling. Here again, higher resolution, more 
detailed models are not necessarily the path to better decisions. In any case, 
as we saw from Equation (9.3), there will inevitably be some residual uncer-
tainty. However, having gotten to this stage, a decision needs to be made by 
somebody: Is there a problem or isn’t there, what are the risks, should some-
thing be done about them and if so what, is it technically the most appropri-
ate solution, will the majority agree with it, how much is it going to cost, can 
we afford it, should we afford it, and does it represent value for money? This 
typifies the decision space that needs to be explored and navigated. Many GIS 
analysts and professional modelers may well say it is not their decision, they 
just ascertain and present the facts as they see them. But as we discussed 
in Chapter 5 (Figure 5.7), there has to be communication with the policy 
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makers and the public in an iterative process that should ideally bring about 
an informed consensus. Bellamy et al. (1999), for example, have emphasized 
the political and social context of environmental decision making requiring 
an inclusive process of collaboration and participation of scientists, profes-
sionals, and stakeholders. The reduction of risks is not just a matter of science 
and engineering (Tansel, 2005), but needs to include people’s perceptions of 
hazard and how to deal with them. Social and economic factors are key in 
distinguishing disasters from ordinary events and, therefore, are crucial 
in assessing disasters (Wisner et al., 2004). Those affected by disasters tend 
to be people who are geographically marginalized to hazard-prone areas, 
socially marginalized because they suffer poverty and other inequalities, 
and politically marginalized because their voice is disregarded (Gaillard 
et al., 2007). Environmental decision making is inevitably negotiated in an 
arena of power relations where some actors have more power, resources, 
and better tactics with which to be heard (Few, 2002; Haque, 2003; Mercer 
et al., 2008).

If the level of propagated uncertainty to ℜ is high, one policy option is to 
continue improving the level of knowledge about risks so that a policy deci-
sion on whether or not to intervene eventually can be taken (Figure 10.1). 
This means that GIS analysts and professional modelers should be hon-
est in giving information about the limitations and uncertainties of their 
analytical products (Rejeski, 1993). That having been said, in the arena of 
environmental policy making, particularly at national level, the degree 
of uncertainty can have a perverse effect when coupled with irreversibil-
ity (Arrow and Fisher, 1974; Saphores, 2004). Where there are high risks of 
irreversible effects but low certainty, then an optimal solution can be to act 
immediately. To some extent, we have seen this with Hurricane Katrina that 
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devastated New Orleans. On the one hand, despite the low level of certainty 
in predicting when the next hurricane of this magnitude might strike, or 
the effect of climate change on increasing the incidence and severity of hur-
ricanes, and, on the other, the human, economic, and political cost of that 
hurricane alongside what appears to be irreversible damage to some resi-
dential neighborhoods and potentially irreversible effects to the city as a 
whole (and other cities and communities in the region) from similar or more 
severe events in the future, did appear to trigger national policy changes 
toward climate change.

In the rest of this chapter, we will be looking at spatial decision support 
systems (SDSSs) as a means of exploring the decision space as part of the 
strategy for managing risks through risk reduction. We will then briefly look 
at the communication of spatial concepts as part of the iteration of decision 
making before moving on to a consideration of Web-based GIS as part of 
participatory approaches to decision making.

Exploring the Decision Space: Spatial 
Decision Support Systems

In Chapter 5, Figure 5.6 showed how there is a range of alternative, even 
complementary strategies that could be put forward to reduce the level of 
risk depending on the degree of prevention or preparedness that society is 
willing to pay for and accept. We also noted that mitigation in terms of pre-
vention or preparedness was a spectrum from maximum risk reduction usu-
ally at a high financial cost to much smaller levels of risk reduction at a much 
reduced financial cost. What is more, they are not mutually exclusive. Given 
the magnitude and frequency relationship of natural hazards, it may be pro-
hibitively expensive or technically impossible, for example, to prevent loss 
from higher magnitude events, in which case some form of preparedness 
through zoning or early warning may be prudent. Lower magnitude events 
that happen more frequently, on the other hand, may indeed be preventable 
at an economic cost and allow land to be kept in productive use. Such deci-
sions may well change from one area to another depending on the local level 
of risk. Decisions on where and when to employ structural or nonstructural 
measures of mitigation and the mix that may represent a good, affordable 
strategy need to be based on an assessment of realistic alternative scenarios. 
SDSSs allow such assessments to be structured.

Decision support systems (DSS) began their technical development in the 
1960s at the Massachusetts Institute of Technology (MIT) as computer-based 
solutions to support complex decision making and problem solving. The 
classic DSS tool comprised of the following components:
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Database management system for accessing internal and external •	
data, information, and knowledge.
Modeling functions.•	
User interface designs for interactive queries, graphical display, and •	
reporting.

The main focus of DSS research has been on how information technology 
(IT) can improve both the efficiency with which decisions are made and the 
effectiveness of those decisions (Shim et al., 2002). A structured problem is one 
that is fully specified in terms of the objective of the decision and the nature of 
the problem to be solved. They, therefore, tend to be problems that are routine, 
repetitive, and easily solved. Structured problems clearly don’t need the aid of 
IT to effect a solution. The bath is overflowing, so turn off the tap. But, there 
are a whole range of problems that are ill-structured in which the nature of the 
problem itself may not be known or cannot be fully and coherently specified, 
the objective of the decision may not be clear. These may be new, novel prob-
lems or ones that are difficult to solve. A heightened incidence of lung cancer 
is identified on the south side of the town. Sure, cancers are a problem, but 
are they a consequence of some hidden cause in that part of town (asbestos in 
the building materials?), caused nearby and wafted in (that new incinerator?) 
or caused entirely elsewhere (they all work in the same factory in the next 
town?). What is the real problem, how do we find it, and when we’ve found it, 
how are we going to solve it? Semi-structured problems would have a mix of 
characteristics of structured and ill-structured problems. DSS are designed to 
assist in solving semi- and ill-structured problems. The decision process that 
DSS try to mimic is based on intelligence, design, and choice (Simon, 1960) 
where intelligence is the means by which we search for and clarify problems; 
design involves the development of alternatives and choice consists in analyz-
ing the alternatives and choosing one for implementation. Another way of 
putting this is illustrated in Figure 10.2 and concerns methods and goals. DSS 
provide structure and assistance in moving through the contingency table in 
a counterclockwise direction (and never the other way), first in defining goals 
through a proper definition of the problem to be solved and then in defin-
ing methods first through the development of candidate solutions and then 
through the design and delivery of the solution to be implemented.

SDSS are not fundamentally different from DSS other than a focus toward 
the solution of complex spatial problems (Densham and Goodchild, 1989; 
Densham, 1991). Because of the spatial dimension, SDSS will need to have 
additional capabilities that:

allow handling of spatial data;•	
allow representation of spatial relations (e.g., topology);•	
include spatial analysis techniques (e.g., buffering, overlay);•	
provide visualization of spatial data.•	
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Of course, most of what is required in terms of these additional capabilities 
can be provided by GIS, though GIS on their own do not constitute SDSS, as 
most semi- and ill-structured problems of a spatial nature have a complex-
ity that cannot be solved purely by query and recombination of geographic 
data alone. Moreover, GIS only have a narrow set of modeling capabilities 
falling short of what would be desirable in SDSS. From the same perspective, 
environmental simulation models are not DSS either (spatial or otherwise). 
Bring the two together and you start to have the minimum configuration 
for an SDSS, the ability to carry out “what if”-type analyses that provide 
multiple outcomes that characterize the decision space being explored for 
implementable solutions. The architecture then of an SDSS is not dissimilar 
to those discussed in Chapter 7 for the coupling of technologies where one 
would expect at least a loose coupling for multiple “what ifs” to be tractable. 
While the ideal for an SDSS would be a tool coupling (Figure 7.10) to form 
a modeling framework with subsystems for data management, spatial data 
processing, model building and management, model execution, quality man-
agement and visualization, this is not always feasible. SDSS are often imple-
mented for specific problem domains that, in a spatial context, often means 
within a finite geographical area. The up-front cost and time to implement 
a tool coupling may not be justified and instead a lower order of integration 
may be chosen. Also, if each of the basic tools being brought together are in 
themselves sophisticated with extensive user-interface and a range of indus-
try “standard” input and output formats, then there is often little incentive 
in working toward a fuller integration, especially when GIS analyst and pro-
fessional modeler are separate individuals working extensively with their 
own tools. In the Hong Kong basin management planning example given 
in Chapter 6, the initial phase was characterized by a loose coupling with 
GIS and hydraulic modeling activities being carried out in different locations 
(university and consultants offices) with a two-way data transfer every few 
days. It was only in subsequent phases of the project (it ran its course over 
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several years) that a closer coupling was achieved. Furthermore, as we dis-
cussed in Chapter 9, many environmental simulation models have a long life 
span due to the cost of development and testing and working toward closer 
integration of the so-called legacy software can seriously detract from get-
ting on with the project in hand unless such integration is a longer-term goal 
to be achieved incrementally.

Examples of DSS and SDSS applied to environmental problems abound 
in the literature. In Chapter 7, under the section on model management, we 
briefly looked at a prototypal system combining GIS, expert system, and 
environmental simulation models that was used to guide the appropriate 
choice of simulation model in studying fish damage in relation to pH levels 
in lakes (Lam, 1993). Update on that 10-year development program to create 
RAISON (Regional Analysis by Intelligent Systems ON microcomputers), an 
environmental DSS, is provided by Booty et al. (2001). RAISON DSS is seam-
lessly linked within the MSWindows® environment as a hierarchy of tools 
(Figure 10.3(a)). The interconnectivity of tools has been achieved through the 
use of Windows interoperability features (clipboard, OLE, DDE) as well as 
purpose-built linkages. The architecture is illustrated in Figure 10.3(b). Three 
separate databases are used to store different types of data, though all were 
built using Microsoft Access. RAISON DSS has mass balance models (for toxic 
chemicals) and trajectory models (air and water) converted to Visual Basic. 
The artificial neural network (ANN, back-propagation) is used predominantly 
for filling data gaps in input data (such as meteorological inputs to the air 
trajectory model) and for data classification. The expert system is rule-based 
with fuzzy logic and, while also used for data classification, has an important 
function on advising on scientific processes and knowledge limitations. The 
GIS component is used for the creation and editing of spatial objects, general 
spatial data handling, and for some aspects of visualization. Visualization 
also includes graphing and animation. Booty et al. report that creation of a 
system for a lake from within the RAISON DSS shell is relatively straightfor-
ward. The most time-consuming task is the collection of all the georeferenced 
and nongeoreferenced data from the various sources. The most technically 
difficult task is the selection of the most appropriate models for the system 
and becoming knowledgeable in their use. They consider the key benefit of 
the DSS is being able to bring together environmental science and economics 
for decision makers in meeting mandated elimination of pollutants.

An SDSS for the purpose of multiple-criteria site analysis is reported by 
Jun (2000). Here, DSS become the means for handling multiple socioeco-
nomic criteria while considering physical suitability. By coupling GIS with 
expert systems and a tool for multiple-criteria methods, decisions can be 
coupled with prioritization. Within the loose coupling that transfers crite-
ria and rules using text files, the expert system provides rules that advise 
on physical suitability constraints for generating suitability maps using GIS, 
while the multiple-criteria decision tool accommodates trade-offs in the mul-
tiple and conflicting decisions in determining a preferred location. Feedback 
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loops allow the consequences of successive decisions to be assessed, thus 
allowing confirmation or rejection of earlier decisions and a gradual nar-
rowing down of the solution space. The SDSS set-up in Hong Kong by cou-
pling GIS and hydraulic modeling (Chapter 6, Figure 6.10) allowed multiple 
“what if” scenarios of different land use developments (prepared using 
GIS) against different return periods of rainstorms (hydraulic modeling) for 
which appropriate engineering solutions for mitigation and their associated 
costs could be identified. On the basis of these multiple outcomes, a preferred 
development scenario and a mix of structural and preparedness measures 
against flooding could be identified. In DSS applications, it is common to 
split the set of inputs into two components: those that are under the control 
of the client or stakeholders and those that are not:
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	 Ω : (x1, x2, x3, …, xn; y1, y2, y3, …, yn) (10.3)

where Ω = set of domain inputs, x = set of inputs under the client’s control, y 
= set of inputs not under the client’s control.

The solution space necessarily focuses on those inputs the client is able to 
control and through which changes can bring about a solution. This means 
that solutions may be suboptimal in terms of the domain, but optimized 
for the client. Traditionally, GIS, environmental simulation modeling, and 
DSS have tended to adopt positivist assumptions of objectivity and value-
neutrality and this can lead to political and ethical conflicts (Lake, 1993; 
Pickles, 1995). I have commented earlier on the reductionist nature of the 
layered approach to GIS providing static snapshots of reality that often have 
over-precise representations of boundaries and over-homogenous character-
ization of features. At its heart, simulation modeling is the application of 
computational simplifications of reality. Even with the inclusion of expert 
systems, fuzzy concepts, and so on, the whole DSS approach can be viewed 
as being dispassionately algorithmically driven. Individuals, communities, 
and organizations are hardly represented by databases of physical objects 
and models of physical processes that are the mainstay of GIS and environ-
mental modeling. These are criticisms that are not easily overcome from a 
technical perspective, but relate more to how GIS and environmental model-
ing are embedded within the planning system. As we shall discuss below, 
one important direction has been the growth in participatory planning and 
Web-based GIS. Nevertheless, despite these criticisms, DSS couplings of GIS 
and environmental simulations models have proved a successful strategy for 
exploring the decision space of an application domain.

Communication of Spatial Concepts

An important function of GIS when coupled with environmental modeling 
is postprocessing and visualization. The postprocessing has already been 
discussed in previous chapters. Here we will give some consideration to the 
visualization and communication of spatial information within the general 
context of this book. A good piece of modeling, with uncertainty reduced 
to a minimum, will fall flat if the results cannot be adequately communi-
cated. This comes down to good cartographic skills with quantitative and 
qualitative data. It must also be recognized that not everybody can instantly 
recognize and feel comfortable with plan representations of multidimen-
sional phenomena (Keates, 1982) and, therefore, the means of communica-
tion and its effectiveness need to be carefully considered. It is often a case 
of having to supplement maps with other representations, such as tables, 
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graphs, and images. The Web is providing new tools in this regard (Kraak 
and Brown, 2001).

The principle of communication through maps can be summed up as: 
“How do I say what to whom, and is it effective?” (Kraak, 2001). This concept 
that underpins cartographic design which aims to create maps that can be 
understood effectively by users. The “what” aspect concerns the informa-
tion content to be presented on a map—the data model. Such content needs 
to be analyzed and determined in relation to the objective of presenting 
such content. The aspect of “how” is the means by which the information 
is represented cartographically. In achieving the creation of a good map, 
the basic concept of the cartographic theory developed by Bertin (1967) can 
be regarded as key guidelines (see below). Another aspect is how a user 
reads the map, which leads to “whom”: the user. Users should always be 
considered in the process of creating maps with either an emphasis toward 
a particular group or more toward individual users, their expected back-
ground, likely level of understanding of the concepts being mapped, etc. 
The “effective” aspect demonstrates the amount of information extracted 
and understood by users. The information intended to be communicated 
through a map and the information retrieved by a user will rarely achieve 
an exact match, which can be viewed as the different levels of effectiveness. 
There can be information loss or, as in Chapter 8, Figure 8.6, levels of uncer-
tainty in use can arise through confusion, ambiguity, or misrepresentation 
of the information to be imparted. In deciding an appropriate cartographic 
design, it is important then to analyze the characteristics of the information 
that is to be visualized and understood.

Bertin (1967) has distinguished six visual variables that are important in 
thematic map construction and relate mostly to the symbology used to rep-
resent features. The variables are size (e.g., thickness of lines, size of points), 
shape (e.g., circles versus triangles, dashed lines), orientation (say, of labeling), 
color (scheme, range), value (e.g., the degree of contrast over the color range), 
and texture (e.g., smooth versus coarse patterning). These all need careful 
consideration and even some experimentation and testing on colleagues for 
legibility. Tufte (1983) has further laid down some principles of graphical 
excellence, which can be well applied to thematic mapping. The cornerstone 
of graphical excellence is interesting data well presented; in other words, 
there must be something worth communicating. A well-designed presenta-
tion becomes a matter of substance, statistics, and design; it consists of com-
plex ideas communicated with clarity, precision, and efficiency. What this 
means is that the graphics (map or other visualization) should give the viewer 
“the greatest number of ideas, in the shortest time, with the least ink in the 
smallest space” (Tufte, 1983). Above all, it requires telling the truth about the 
data. In thematic maps of quantitative data, the main challenge in telling that 
truth often boils down to the number of class intervals, the identification of 
class boundaries, and what symbology to use for each class. Most GIS pack-
ages provide default approaches to help the user through this task, usually 
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giving a choice of equal interval, equal area, natural breaks, standard devia-
tions and quantiles, and inevitably in shades of red. One problem is the over-
use of a particular default by individuals or within an organization without 
much thought given to the nature of the data or the nature of the message, 
results in throw-away graphics. The issues of good thematic map design are 
still being debated in the search for good representations that provide more 
objectively comparable maps (e.g., Brewer and Pickle, 2002). One key here is 
the normalization of data prior to map creation. A common means of nor-
malization is the z-score:

 Z x x= −
σ   (10.4)

where x  = the mean value, σ = the standard deviation.
Unfortunately, unless the data are normally distributed (which very often 

they are not), this can lead to bias. Recently an alternative to the z-score, 
robust normalization, has been introduced (Brimicombe 1999b, 2000b). The 
process of robust normalization can be visualized in Figure 10.4 where there 
are initially two sets of data with contrasting distributions. The first stage 
of normalization is the centering of the boxplots through subtraction of the 
median. Sibley (1987) suggests division by the interquartile range to give 
standardized boxplots, but this gives values that can be difficult to interpret 
in terms of core and extreme values. Instead, robust normalization uses an 
asymmetric division in the form:
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 RN = (x – median)/(median – lower quartile) for x < median (10.5)

 RN = (x – median)/(upper quartile – median) for x > median (10.6)

 RN = 0 for x = median (10.7)

This ensures that all data are transformed to have a median of zero and 
an interquartile range of [-1, 1]. Extreme values can be taken as values of RN 
< –3 or RN > 3 (equivalent to 2 standard deviations of a normal distribu-
tion). This also leads to an intuitive set of class intervals, which make maps 
more objectively comparable. Figure 10.5 gives a robust normalized mapping 
of the pipe burst case study. The eye can quickly pick out the one location 
where there is both a high extreme occurrence of cases as represented by 
density and a high extreme occurrence of risk. That would be the first area to 
prioritize for remedial action.

MacEachren and Kraak (1997) have identified different purposes for map 
visualizations depending on the intended audience, the degree of interaction 
with the viewer, and the degree of unknowns still to be resolved. Thus, maps 
can be used to explore data and issues, analyze them, provide synthesis, and 
for presentation. Further advances in data exploration useful to GIS and 
environmental modeling are interaction with the graphics through the use 
of “brushing” techniques with linked, alternative views of the data (Dykes, 
1997). We are also now seeing the incorporation of images, panoramas, and 
video alongside maps in the exploration of real world phenomena (Dykes, 
2000). Through the Web, we have seen the growth of clickable maps in a 
multimedia setting that facilitate pathways to data and information. This 
underscores the next issue we need to consider.

Participatory Planning and the Web-Based GIS

Two important, synergistic trends occurred during the 1990s that have 
changed the face of decision making. The first was the established ubiquity 
of the Internet and the Web over a highly interconnected telecommunications 
environment, which has not only facilitated a network-oriented approach to 
GIS and environmental modeling (and most other IT applications of signifi-
cance), but has promoted almost instantaneous communication worldwide. 
The second is the high level of access to PCs in the industrialized nations 
promoting a user-centered approach to information gathering and participa-
tion socially and politically as actors over the network. Surfing the Web has 
become an important part of people’s social and business lives. This has been 
mirrored in the migration of complex decisions from single individuals to 
large groups of individuals as governments strive to promote inclusiveness 
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A robust normalized mapping of the pipe burst cluster detection (a) density, (b) risk.
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to offset the growing socio-economic rifts and marginalization of the poor 
that has also grown over the same period. Such notions are also at the heart of 
online “community mapping” initiatives in which residents collaboratively 
produce maps of their locale that feature local knowledge and resources 
(Parker, 2006). Examples can be found at http://www.greenmap.org. Such 
projects aim to promote inclusion, transparency, and empowerment. IT is 
seen on both sides of the Atlantic as transforming lives (e.g., PITAC, 1998), 
but not all is rosy with the emergence of a “digital divide” (NTIA, 2000; Hull, 
2003) where segments of society are nevertheless slipping into the margins 
of the informational economy (Castells, 1998). The term e-government has 
been added to our expanded vocabulary of “e” words. We are now in an age 
of growing participatory or collaborative decision making at the local level, 
including environmental and planning issues, in which the Web is the major 
vehicle for access.

Spatial planning has always been a complex process in which the recom-
mendations emanating from a narrowed decision space as an outcome of, 
say, GIS and environmental modeling within an SDSS framework, needs to 
be mediated by the social and political reality (highly subjective and selective 
of perceived issues that they are) into a consensus for action. The environ-
mental awareness that is now ingrained has made the process more complex 
and yet at the same time there has been a growing distrust or skepticism that 
scientists and experts know the right answers. Ferrand (1996) identifies three 
main elements: (1) the environment (the territory and related elements), (2) 
the proposed project, and (3) a “set of embedded actors” who will usually 
be a large, diverse group. Reality will inevitably be a social construction as 
perceived by the planners, the policy makers, and the embedded actors who 
“emphasize the contingency of information.” Howard (1999) has detailed a 
number of advantages of Web-based approaches to participation in the plan-
ning process:

Participation does not have to be restricted to attendance at meetings •	
in specific geographical locations.
Access to pertinent information can be from anywhere that has Web •	
access.
Access to information is not subject to “opening hours,” but is avail-•	
able 24 hours a day, 7 days a week.
Views can be expressed relatively anonymously and in a noncon-•	
frontational situation.

Web-based participatory GIS (PGIS) provides an important adjunct to par-
ticipatory planning as a means of facilitating and structuring access to data 
and information in map or mixed-media formats. This can be achieved in a 
number of ways (Harder, 1998):
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Static, noninteractive maps that are the digital equivalent of the •	
paper map.

Time-slice, noninteractive maps that are changed periodically, such •	
as weather maps.

Static, interactive maps (HTML image map) that provide a carto-•	
graphic gateway to more detailed maps and/or other forms of data 
and information by clicking on the relevant location.

Static, interactive maps that can be zoomed and panned by clicking •	
relevant on-screen icons or scale bars.

Dynamic, interactive maps with regular refresh that show changing •	
situations, which are clickable for more information locally, such as 
traffic congestion maps.

Static, user-defined maps that are created online via an interactive •	
menu of options.

User-defined, interactive maps that allow the user to undertake •	
online spatial analysis using data layers and allowing subsequent 
clickable queries of the map.

These are all useful configurations for participatory planning and the first 
three in the above list require only simple architecture. The last four would 
normally require a vendor’s Internet server version of their GIS software. A 
general overview of PGIS is given by Weiner and Harris (2008) and their use 
in relation to decision making by Jankowski and Nyerges (2008).

Kingston et al. (2000) describe the use of Web-based PGIS as part of a par-
ticipatory planning initiative that took place in a village called Slaithwaite 
in West Yorkshire, United Kingdom (http://www.ccg.leeds.ac.uk/projects/
slaithwaite/). The particular planning issues concerned the reopening of 
a canal through the village center, commercial traffic access to industrial 
sites, and many old buildings in disrepair. A Web-based GIS was considered 
appropriate as the whole community would benefit from being able to pro-
vide input to decisions about difficult problems. The design of the system 
centered on a Java map application called GeoTools, which allows pan, zoom, 
simple spatial query, and attribute input through a text box. If on navigat-
ing the map, a user wished to comment on a building or particular feature, 
it could be selected using the mouse and a free-form text box would pop 
up into which comments could be typed. The database would be immedi-
ately updated with the comment for collation and analysis at a later stage. 
Each user was requested to fill in a form that could later be used to profile 
respondents. The system was found to offer a high degree of flexibility with 
continual update of the database with comments. Any corrections/changes 
that needed to be made to the base data as a result of a user’s local knowledge 
could be carried out quickly. Kingston et al. observed a high level of profi-
ciency in map usage and where a feature could not readily be found, users 
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would navigate from recognized, known objects. Most problematic for the 
older generation was the use of a mouse to select features. All users seemed to 
appreciate the opportunity to write as much as they wished about any issue. 
Within the respondents was a strong gender bias toward male users and 
there was an occupational weighting toward professional/managerial and 
educational employment. The dominant age group of respondents, however, 
was school-age children. One significant problem recognized by Kingston 
et al. centered on making all the data and information available to users in 
relation to who controls and owns them. Contracts for use of data are often 
quite restrictive and for Web-based media, owners want to charge on a per-
view basis, which could make participatory planning very expensive with 
resources tied up in complex copyright and legal issues. Nevertheless, the 
basic principles underscoring participatory processes incorporating Web-
based PGIS are:

All sectors of the community should have equal access to data and •	
information.

The community should be empowered through the provision of data •	
and information that maps onto the communities’ needs.

The legitimacy and accountability of the process needs to be under-•	
scored by a high degree of trust and transparency.

Mercer et al. (2008) have studied the methodological advantages, limita-
tions, and ethical issues of participatory techniques in the context of disas-
ter risk reduction. While the advantages outweigh the limitations resulting 
in broadening the capacity for dialog between communities likely to be 
impacted by disasters and the relevant stakeholders with effective knowl-
edge sharing and transfer, it was found that groups can inhibit individ-
ual voice, the process can be time consuming, and unequal power levels 
between the participants influence the interactions. Ethical issues focus 
on unduly raising expectations: Who is really being empowered, are par-
ticipants being exploited, and where does ownership reside? Nevertheless, 
PGIS is becoming far more sophisticated (e.g., http://www.miltonkeynes-
windfarm.com) and seen as an increasingly convenient and cost-effective 
means of carrying through mandated public consultation around plan-
ning decisions.

All’s Well That Ends Well?

Burrough et al. (1996) have given consideration to the advantages and disad-
vantages of computerized environmental modeling:
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Advantages

Models can accommodate many variables and complex •	
interactions.
Data storage for a model is standardized, while simulation provides •	
an organized approach.
Modeling requires interdisciplinary cooperation in its •	
development.
Simulation/modeling languages can be a means of communicating •	
ideas.
Simulation is a fast and inexpensive method of investigation.•	
Using simulation, it is possible to compress decades and centuries •	
into minutes.
Models can be evolved as knowledge and understanding of pro-•	
cesses improves.
The ability to experiment with models is greater than it is in the real •	
world.
Models permit the extrapolation of known results to new locations.•	
The addition of GIS allows data to reflect a range of spatial and tem-•	
poral situations.

Disadvantages

Inexperienced users may uncritically accept results and assume that •	
models are working correctly.
Even experts may accept modeling results without validation of •	
fitness-for-use.
Mechanistic use of simulation can be detrimental to rational deci-•	
sion making.
Simulation does not replace the need for fieldwork.•	
Over-emphasis on models may overshadow important field experi-•	
ence on the significance of site-specific factors.
Careful calibration of models is required and there are few •	
guidelines.
Adequate calibration may be difficult or even impossible for some •	
models.
The use of computational models requires accurate data at appropri-•	
ate spatial and temporal resolutions.
The development of complex models is expensive.•	
Correct results do not guarantee a correct model.•	
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The majority of the disadvantages cited here could be put down to the 
effects of inexperience. This is not to belittle students and younger profes-
sionals and it has been the purpose of this book to promote a healthy criti-
cality in the use of GIS and simulation models, particularly when they are 
used together. The advantages are all for the taking and although the num-
ber of disadvantages equals the number of advantages, the disadvantages 
are to a greater or lesser extent avoidable, so there is, in fact, everything to 
be gained. But, does all this effort influence, for example, policy toward 
hazard mitigation and risk reduction? Is it making the world a better 
place? That’s a tough call, and I don’t think there can be any easy measure. 
Certainly a greater understanding of the processes underlying hazards and 
their mitigation has been achieved through the use of models. Most of our 
knowledge is bound up in models. However, having mapped Ω (the set 
of domain inputs) into ℜ (the set of real decisions), having evaluated the 
uncertainties along the way such that the risks are known and any residual 
risks in making a decision have been minimized, then what is left is all 
down to politics.
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 ground survey, 41
 historical developments, 12–14, 15–16
 inertial navigation systems, 38–39
 limitations, 44, 46
 machine representation, 24–32
 nontraditional approaches, 42
 object-oriented analysis, 31–32
 remote sensing, 39–40
 revolution, 47
 spatial phenomena representation, 

19–24
 systems definition, 44, 46
 technological facilitation, 14, 16–18
 tessellations, 28–31
 vector model, 26–28
Geographical proximity zones (GPZ), 

178–182
Geography, first law of, 76
Geo-information (GI) engineering, 49, 

59–60
Geo-information (GI) science, 49–59
Geological Society Working Party on 

Land Surface Evaluation for 
Engineering Practice, 245

Geometrical knowledge, 203
Geometric manipulation, 47
Geo-ProZone (geographical proximity 

zones), 178–182
Geosimulation, 46–48
Geostatistical software, 294
GeoTools, 310
GI, see Geo-information (GI)
Giant panda-bamboo integration, 

126–131
GI engineers, 60
GIS, see Geographical information 

systems (GIS)
GIVEN, 117–118
Global Positioning Systems (GPS), 38–39
Glocalization, 2
GLONASS, 38
GLUE, see Generalized likelihood 

uncertainty estimator (GLUE)
Goodchild studies, 52–53, 58
Google searches, 182
Google Street View, 41
Goudie, A., 4
GPS, see Global Positioning Systems 

(GPS)
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GPZ, see Geo-ProZone (geographical 
proximity zones)

Gradients, spatial phenomena 
representation, 20

Grassland class, 222
Grey box models, 68, 91
GRID, 12, 13
Grid tessellations, 132
Gross domestic product (GDP), 1
Gross errors/blunders, 219
Ground surveys, 41, 50
GSLIB public domain software, 240, 294
GT index, 228
Guiyang City, 267–269
Guizhou Province, 267–269
Gut feelings, 6

H

Habitat, condition of, 251
Hamming distance, 248
Hardware models, 67
Harvard Graduate School of Design, 12
Hausdorrf dimension, 269
Hazards, contextual issues, 101–104
Heavy metals, 135, 267–268
Heuristics
 artificial intelligence, 117, 118–119
 environmental models, role and 

nature, 118–119
 GPZ algorithm, 180
 typology of models, 67
Heuvelink’s formulation, 240–241
Hierarchical tessellation, 179
Hierarchy of needs, 226
Hindcast, 82
Historical developments
 basin management planning, 161
 data collection technologies, 37–38
 geographical information systems, 

12–14
 Global Positioning Systems (GPS), 38
 measurement, 11
 optical scanning, 13
 raster to vector conversion, 13
 remote sensing, 39–40
 spatial database management 

system, 13
 technology, 49–50

 timeline, 15–16
HKDSD, see Drainage Services 

Department (Hong Kong 
Government) HKDSD

Holothuria leucospilota, 121
Hong Kong
 basin management planning, 

158–169
 hazard, vulnerability, risk, 101–102
 power stations/overhead power 

transmission lines, 97–99
 preconditions, 188
 simulation issues, 196
 spatial decision support systems, 301, 

303
Horn’s method, 284
Hotspots, 175, 177
HTML (Hypertext markup language), 

see World wide web (WWW)
Human Impact Reader, The, 4
Humans
 environment interaction, 92–93
 geography, 52
 hazard perceptions, 298
 impact on environment, 3
 inappropriate land development, 101
Hunches, 6
Hurricanes
 agent-based models, 122
 Hurricane Katrina, 298–299
Hydraulic modeling
 basin management planning, 158, 

160–163
 spatial decision support systems, 301, 

303
Hydrodynamic models
 coastal oil spill modeling, 170, 172
 model structure issues, 286–287
 transport through a medium, 

139–144
Hydrological modeling
 calibration, 292
 CHASM, 209
 issues, 193
 lumped parameter models, 126
Hydrological Processes, 5
Hydrostatic pressure gradient, 139
Hypertext markup language (HTML), 

see World wide web (WWW)
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IBM Assembler, 16
IBM server, 220
Iconic models, 67
Icons, integration vs. interoperability, 

199
ICS (Index of Cluster Size), see Indices
IDNDR, see International Decade of 

Natural Disaster Reduction 
(IDNDR)

IDW, see Inverse distance weighted 
(IDW)

Ikonos satellite, 40, 93
Ill-structured problems, 300
Impacts, assessment, 95
Imperfect measurement, 219–220
Implicit topology, 30
In-built macro languages, 197
INDENTITY, 232
Independent integration, 190
India, 70
Indices
 empirical models, 115, 117
 GT index, 228
 index of cluster size, 176, 178–180
 Index of Contagion, 289
Induction, modeling approaches, 65
Inductive models, 91–92
Industrial revolution, 3
Inertial navigation systems (INS), 38–39
Infinite zoom problem, 221
Information, 6, see also Data and 

information, quality issues
Information input, 57
Inherited attributes, class, 31–32
Inherited uncertainties, 215
Initial conceptualizations
 embedded integration, 191–192
 fundamentals, 189
 independent integration, 190
 loosely coupled integration, 190
 tightly coupled integration, 191
Initial state of system, 124
Input aggregation, 277
INS, see Inertial navigation systems 

(INS)
Instances, class, 31–32
Integrated approach, 97, 99

Integrated coupling, 209
Integration
 embedded integration, 191–192
 environmental modeling with GIS, 

201–203
 independent integration, 190
 initial conceptualization, 189
 integration vs. interoperability, 

198–201
 joined coupling, 209
 loose coupling, 190, 207
 model management, 203, 206–207
 one-way data transfer, 207
 shared coupling, 209
 tightly coupled integration, 191
 tool coupling, 209–210
Integration vs. interoperability, 198–201
Integrative issues, 56
Interface coupling, 209
Intermediate states, 197
Internal state variables, 110
International Decade of Natural Disaster 

Reduction (IDNDR), 101
International Journal of Geographical 

Information Science, 5
Internet, 198, see also World wide web 

(WWW)
Interoperability vs. integration, 198–201
Interpolation
 applying models, 86–87
 GIS functionality, 43
 heuristics, 118
 modeling error and uncertainty, 

236–242
INTERSECT
 fuzzy concepts, 242–243
 topological overlay, 232–235
Interval classification, 35, 36
Intrinsic uncertainties, 215
Inverse distance weighted (IDW)
 algorithm issues, 277, 279
 applying models, 84–87
 heuristics, 118
 interpolation, 238
 sensitivity analysis, 257
 topography modeling, 76–77
Iron, 267–268
Irregular tessellations, 28
Irrigation systems, 3
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Issues
 algorithm, 277–285
 calibration, 288, 290–293
 cognitive, 56
 data, 57, 293–295
 databases, 193
 digital elevation models, 196, 

265–266, 282, 284
 distributed parameter models, 266
 finite difference method, 282–283
 finite element method, 285
 fitness-for-use, 57
 flooding, simulation, 196
 fractals, 269
 fuzzy concepts, 269
 GIScience, 56
 hazards, 101–104
 hydrodynamic models, 286–287
 hydrological modeling, 193
 inverse distance weighted, 277, 279
 joined coupling, 209
 judgment and context, subjective, 

223–224
 Koch’s curve, 269–270
 kriging, 269, 278, 281
 least-squares plane, 283
 loose coupling, 207
 loosely coupled integration, 190
 management, coupling, 203, 206–207
 map cross-correlation, 273
 maximum gradient calculation, 282
 measurement, 219–220
 Microsoft Windows, 197
 model structure, 287
 modifiable areal unit problem, 271, 

274–276
 natural variation, 221–222
 no effect concentration (NEC), 277
 one-way data transfer, 207
 organizational, 57
 output aggregation, 277
 Peano scan, 270
 preconditions, 186–188
 predicted environmental 

concentration, 277
 quadratic fitted surfaces, 283
 representative elementary area, 265
 resolution, 264–265
 risks, 101–104

 root mean square error, 279–281, 284
 scale, 264–277
 Schelling model, three-population, 

288, 289
 second-order finite difference 

method, 283, 284
 second-order neighbors, 283, 284
 semantic confusion, 224
 shared coupling, 209
 simulations, 57, 197
 slope factors, 284
 spatial data quality, measurement, 

226–231
 spills, 266
 steepness of slope factors, 284
 subjective judgment and context, 

223–224
 sustainable development, 99–101
 third-order finite difference method, 

283
 three-population Schelling model, 

288, 289
 tidal data, 266
 tightly coupled integration, 191
 tool coupling, 209–210
 trajectory model, 266
 triangulated irregular networks, 

278–281
 uncertainty, 213–217, 224–226
 Universal Soil Loss Equation, 284
 vulnerabilities, 101–104
 warnings, 217–219
 watershed, 193
 zones, 271–273
Issues, contextual
 environmental impact assessment, 

94–97
 fundamentals, 92–94
 hazards, 101–104
 integrated approach, 97, 99
 risks, 101–104
 sustainable development, 99–101
 vulnerabilities, 101–104
Issues, coupling technologies
 de facto practices, 210–211
 embedded integration, 191–192
 environmental modeling with GIS, 

201–203
 fundamentals, 185
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 independent integration, 190
 initial conceptualizations, 189–192
 integration vs. interoperability, 

198–201
 joined coupling, 209
 loose coupling integration, 207
 loosely coupled integration, 190
 maturing conceptualizations, 

197–207
 maturing typology, integration, 

207–210
 model management, 203, 206–207
 one-way data transfer, 207
 oversimplification of issues, 192–197
 preconditions, 186–188
 shared coupling, 209
 tightly coupled integration, 191
 tool coupling, 209–210
Issues, data and information quality
 digital representation, phenomena, 

220–221
 early warnings, 217–219
 example, 244–256
 fitness-for-use management, 

259–262
 fundamentals, 213
 fuzzy concepts, 242–255
 imperfect measurement, 219–220
 interpolation, 236–242
 kriging, 238–242
 modeling error and uncertainty, 

231–259
 natural variation, 221–222
 semantic confusion, 224
 sensitivity analysis, 256–259
 set theory, 243–244
 spatial data quality, measurement, 

226–231
 subjective judgment and context, 

223–224
 topological overlay, 231–236
 uncertainty, 213–217, 224–226
Issues, models and modeling
 algorithm, 277–285
 calibration, 288–293
 data issues, 293–295
 fundamentals, 263–264
 model structure, 285–288
 scale, 264–277

Italy
 agent-based models, 122
 landslides, 70
 spatial coexistence, 150

J

Janbu’s method, 72
Japan, 70
Java
 embedded integration, 191
 environmental modeling, 202
 integration vs. interoperability, 200
 interpolation, 240
 participatory planning, 310
 shared coupling, 209
Joined coupling, 209
Judgment and context, subjective, 

223–224
Justice, evaluating models, 82

K

Kappa statistic, 228
KBS, see Knowledge-based systems 

(KBS)
Kernel estimators, 177
Knowledge-based systems (KBS), 

117–118, 206
Koch’s curve, 269–270
Kohonen networks, 121
Kriging
 algorithm issues, 278, 281
 heuristics, 118
 interpolation, 238, 240–241
 modeling error and uncertainty, 

238–242
 scale issues, 269
Kyoto Agreement, 1

L

Lag, interpolation, 239–240
Lag in concern, 214
Lagrangian model, 195–196
Land capability study, 16
Landsat, 93
Landscape
 artificial neural networks, 120
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 empirical models, 112, 113
 spatial phenomena representation, 

19–20
Landslides and landslide models
 artificial neural networks, 121
 building models, 70–75
 conceptual models, 108–110
 digital elevation model, 132
 empirical models, 112
 power stations/overhead power 

transmission lines, 99
 spatial coexistence, 151–157
 spatial phenomena representation, 20
Land surveys, see Ground surveys
Land use, agent-based models, 122
Language, common, 4–5, see also 

Geographical information 
systems (GIS)

La Rochelle, France, 170
Laser-scan, 24
LBS, see Location-based services (LBS)
Least-squares plane, 283
Legal environment, 2
Leopold association matrix, 95
LiDAR, see Light distancing and 

ranging (LiDAR)
Light distancing and ranging (LiDAR)
 data collection technologies, 38
 fundamentals, 40–41
 topography modeling, 75–76
Limitations, 44, 46, 83
Linear models, 121
Lines
 spatial phenomena representation, 

23
 Steven’s typology, 36
 tessellations, 30
 vector approach, 27
Linguistic hedges, 247, 250, 252–255
Linguistic models, 53–54
Linux, 199
Litigious society, 83
Location-based services (LBS), 52
Logical models, 25–26
London, 40, 173–174
Loose coupling, 207, 301, 303
Loosely coupled integration, 190
Lumped parameter models
 preconditions, 187

 process models, 125, 126–131
 source-pathway characterization, 157

M

Machine representation
 fundamentals, 24–26
 object-oriented analysis, 31–32
 tessellations, 28–31
 vector model, 26–28
Macroscopic collision model, 122
MAGIC, 183
Magnesium, 268
Magnitude
 decision environment, 105–106
 hazard, vulnerability, risk, 103, 104
Man-environment interaction, 92–93
Map algebra
 applying models, 85
 empirical models, 114
 GIS functionality, 44
MapBasic, 176, 201
Map cross-correlation (MCC), 273
MapInfo
 density mapping, 176
 environmental modeling, 201
 integration, 198
 integration vs. interoperability, 201
 interoperability, 26, 198
MapObjects, 201
Markov trials, 103
Massachusetts Institute of Technology 

(MIT), 299
Mathematical models, 67
MATLAB, 191
Mato Grosso (Brazil), 121
Maturing conceptualizations
 environmental modeling with GIS, 

201–203
 fundamentals, 197–198
 integration vs. interoperability, 

198–201
 model management, 203, 206–207
Maturing typology, integration, 207–210
 fundamentals, 207
 joined coupling, 209
 loose coupling, 207
 one-way data transfer, 207
 shared coupling, 209
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 tool coupling, 209–210
MAUP, see Modifiable areal unit 

problem (MAUP)
MAX function, 242
MAXIMUM function, 165, 167
Maximum gradient calculation, 282
Maximum likelihood estimates, 74
MC, see Monte Carlo analysis (MC)
MCC, see Map cross-correlation (MCC)
McHarg, I., 4
Measurement
 calibration sensitivity, 291–292
 data and information quality issues, 

219–220
 data characteristics, 34
 historical developments, 11
 spatial data quality, 226–231
Metadata, 215, 259–262
Metaphors of nature, 2–4
Microsoft Excel software, 26
Microsoft Vista, 190
Microsoft Windows
 integration vs. interoperability, 199
 interoperability, 26
 shared coupling, 209
 simulation issues, 197
 spatial decision support systems, 302
 technology developments, 50
Microsoft XP, 190
MIKE 11, 158
Milford Haven, United Kingdom, 170
MIN function, 242
MIT, see Massachusetts Institute of 

Technology (MIT)
ModelBuilder, 202–203, 204
Models and modeling, see also specific 

type
 development process, 87–89
 geographical information systems, 

46
 GIScience issues, 57
 issues, 285–288
 management, coupling issues, 203, 

206–207
 selection, 288, 290
Models and modeling, approaches
 applying models, 83–87
 building models, 69–81
 case studies, 147–150

 development summary, 87–89
 evaluating models, 81–83
 fundamentals, 63–64
 landslides, 70–75
 Occam–Einstein dimension, 77–81
 spatio-temporal dimensions, 77–81
 topography, 75–77
 typology of models, 66–68
 x model, 64–66
Models and modeling, error and 

uncertainty
 fitness-for-use management, 

259–262
 fundamentals, 231
 fuzzy concepts, 242–255
 interpolation, 236–242
 kriging, 238–242
 sensitivity analysis, 256–259
 topological overlay, 231–236
Models and modeling, issues
 algorithm, 277–285
 calibration, 288–293
 data issues, 293–295
 fundamentals, 263–264
 model structure, 285–288
 scale, 264–277
Modifiable areal unit problem (MAUP), 

271, 274–276
Modified infrastructure, 2
Molenaar’s geodata model, 53–54
Monte Carlo analysis (MC)
 calibration, 292
 evaluating models, 82
 heuristics, 119
 interpolation, 242
 sensitivity analysis, 257–259
 spatial coexistence, 153
Moore’s Law, 17, 38, 187
Morgan’s law, 235
Morton ordering, 30
Mother Earth, 3
Mount St. Helens, 78
Moving window approach, 176–177

N

National Center for Geographic 
Information and Analysis 
(NCGIA), 5
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National Environmental Policy Act 
(NEPA), 93–94

Natural analogues, models, 67
Natural environment, 2
Natural variation, 221–222
Nature, metaphors of, 2–4
Nearest-neighbor distance statistic, 176, 

179
NEC, see No effect concentration 

(NEC)
NEPA, see National Environmental 

Policy Act (NEPA)
Network, vector approach, 26
Neurons, 119
New Guinea, 223
New Orleans, 299
Nimbus 7, 93
NIMBY, see Not in my back yard 

(NIMBY)
NOAA, 93
Nodes, 26
No effect concentration (NEC), 277
Nominal classification, 34, 36
Nonlinearity, 292
Nonpoint sources, 148
Nonstationarity, 290–292
Nontraditional approaches, 42
Normalization, 306
Normalized vegetation difference index 

(NVDI), 115, 117
Normative devices, 65
Not in my back yard (NIMBY), 95, 97
NOT selection, 235
Nugget, 240
NVDI, see Normalized vegetation 

difference index (NVDI)

O

OAT, see One-at-a-time (OAT)
Object linking and embedding (OLE), 

209, 302
Object-oriented (OO) analysis and 

approaches
 data models and ontologies, 55
 integration vs. interoperability, 

199–200
 machine representation, 31–32
 model management, 206

 spatial phenomena representation, 
23–24

Object-relational database management 
system (ORDBMS), 24

ObjectStore, 24
Occam-Einstein dimension, 77–82
ODYSSEY, 12, 13
Ok Ma dam site (Papua, New Guinea), 

223
OLE, see Object linking and embedding 

(OLE)
One-at-a-time (OAT), 257, 291
One-way data transfer, 207
Ontologies, 54–55
OO, see Object-oriented (OO) analysis 

and approaches
Open database connectivity (ODBC), 

209
Open Geodata Model, 200
Open Geospatial Consortium, 200
Open GIS Consortium, 200
Open GIS Services Model, 200
Open systems, 108
Operational uncertainties, 215
Operations, geodata model, 54
Optical scanning, 13
ORDBMS, see Object-relational 

database management system 
(ORDBMS)

Ordinal classification, 35, 36
Ordnance Survey (U.K.), 227
Organizational devices, 65
Organizational issues, 57
Orientation, spatial concepts 

communication, 305
OR selection
 fuzzy concepts, 242–243, 250, 254
 topological overlay, 234–235
Orthogonal distance, 248
Output aggregation, 277
Overlay, 43–44, 45

P

Panda-bamboo interaction model, 
126–131, 157

Papua, New Guinea, 223
Parameterization, 84
Parameters quantification, 169
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Participatory GIS (PGIS), 309–311
Participatory planning, 307
Passive remote sensing systems, 40
PCC, see Proportion correctly classified 

(PCC)
PCRaster, 182, 203, 205, 294
PDA, see Personal digital assistants 

(PDA)
PDF, see Probability density function 

(PDF)
Peano scan, 30, 31, 270
PEC, see Predicted environmental 

concentration (PEC)
Pembrokeshire coast (Wales), 170
Perceptual models, 70–74
Personal digital assistants (PDA), 41
Pesticide leaching, 87
Peuker, T., 12
PGIS, see Participatory GIS (PGIS)
Phase space, 109
pH level, 206, 302
Photogrammetric Engineering and Remote 

Sensing, 5
Photogrammetry, 39, 50
Physical models, 25–26
Piemonte region (Italy), 150
Pipe burst case study, 307, 308
Pits, 133
Pixels (3D), 203
Planning, 94
Plan of book, 5–7
Points
 spatial phenomena representation, 

23
 Steven’s typology, 36
 tessellations, 29, 30
 topography modeling, 77–78
 vector approach, 27
Point sources, 148
Poisson distribution, 175–176
Political conflicts, 304
Polygons
 encoding of area features, 14
 preconditions, 187
 spatial phenomena representation, 

23
 vector approach, 26–27
Polyvinyl chloride, water pipes, 178–182
Positivist assumptions, 304

Postdiction, 82
Postprocessing, 292
Precision, 215
Preconditions, 186–188
Predicted environmental concentration 

(PEC), 277
Prediction, 82, 95
Preprocessing, 292
Prescriptive computational models, 68
Pressure zones, 251
Prestige accident, 170
Primary data sources, 32
Prince William Sound, Alaska, 170
Probabilistic models, 121
Probabilities, Steven’s typology, 35
Probability density function (PDF), 257
Problem-solving software, see Agent-

based modeling (ABM)
Procedural knowledge, 203
Procedural wizards, 210
Process models
 digital elevation modeling, 132–134
 discretization, 131–132
 distributed parameter models, 

131–143
 fundamentals, 124–126
 GIScience, 55
 lumped parameter models, 126–131
 preconditions, 187
 scale-dependence, 35
 scale sensitivity, 265
 transport through a medium, 

134–144
Process validity, 82
Project brief, 95
Proportion correctly classified (PCC), 

228, 235
Pseudo two-dimensional approach, 165
Psychological devices, 65
Purposive sample, 86

Q

QAE, see Quality analysis engine 
(QAE)

Quadratic fitted surfaces, 283–284
Quadtree tessellations, 29
Quality analysis engine (QAE), 293–295
Quality of world, 1–2



Index 357

Quantification of parameters, 169
Queries, 43

R

Radar interferometry, 38
Radial basis function, 121
Rainfall map, 34, 37
RAISON, see Regional analysis by 

intelligent systems on 
microcomputers (RAISON)

Random patterns, 176
Range, interpolation, 240
Raster data
 basin management planning, 161
 spatial phenomena representation, 

23
 tessellations, 29
 vector conversion, 229–230
 to vector conversion, 13
Rasterization, 229–230
Ratio classification, 35, 36
Rational method, 126
RDBMS, see Relational database 

management system 
(RDBMS)

REA, see Representative elementary 
area (REA)

Reality, machine representation, 24
Receptors, modeling approaches, 148
Recursive tessellations, 28
References, 315–340
Reference systems, 35
Regional analysis by intelligent systems 

on microcomputers (RAISON), 
302

Regression line
 empirical models, 112, 114–115
 modeling approaches, 63
Regular tessellations, 28
Relational database management 

system (RDBMS), 23
Relative risk, 180
Reliability, evaluating models, 82
Remote sensing (RS)
 artificial neural networks, 121
 data collection technologies, 39–40
 fuzzy concepts, 247

 historical developments, 214
 inductive models, 92, 93
 measurement, spatial data quality, 

228
 preconditions, 187–188
Removal, process models, 124
Representation, curved surface of Earth, 

11
Representative elementary area (REA), 

265
Residual errors
 applying models, 86
 calibration, 291
 evaluating models, 81
 interpolation, 237
 measurement, spatial data quality, 

227
Resolution
 cost models, 56
 data characteristics, 35, 37
 scale issues, 264–265
Return period, 102–103
Revenue-earning potential, 60
Revolution, geographical information 

systems, 47
Rio Earth Summit (1992), 99
Risks
 contextual issues, 101–104
 decision environment, 107
 GPZ algorithm, 180
 reduction, 298
Root mean square error (RMSE)
 algorithm issues, 279–281, 284
 applying models, 85–86
 interpolation, 238
 measurement, spatial data quality, 

227
 sensitivity analysis, 257
Rosenbleuth’s method, 242
RS, see Remote sensing (RS)
Rules of thumb, 118, 218
Runoff curve number (CN), 162
Rural development, 158
Russia, 38, 40

S

SA, see Sensitivity analysis (SA)
São Paulo (Brazil), 122
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Satellite-based positioning systems, 
40, see also Global Positioning 
Systems (GPS)

SatNavs, 59
Scalability, 87
Scale
 data characteristics, 34, 35
 dependent processes, 35
 issues, 264–277
Schelling model, three-population
 agent-based models, 122, 123
 model structure issues, 288, 289
Schumacher, E.F., 4
Science, position determination, 11
Scope of book, 5–7
Scoping, 95
Scripting functionality, 201
SCS, see Soil Conservation Service 

(SCS)
SDSS, see Spatial decision support 

systems (SDSS)
SDTS, see Spatial Data Transfer 

Standard (SDTS)
Sea cucumbers, 121
Sea Empress, 170
Seawater, 135, 137, 139–144
Secondary data sources, 32
Second-order finite difference method, 

283, 284
Second-order neighbors, 283, 284
Second-order Taylor series, 242
Semantics
 confusion, 224
 fundamentals, 53
 models, management, 206
Semi-structured problems, 300
Semivariogram, 240
Sensitivity analysis (SA)
 GIScience, 56
 modeling error and uncertainty, 

256–259
 spatial coexistence, 153
Sensitivity models, 56
Services, class, 31–32
Set theory, 243–244
Shape, spatial concepts communication, 

305
Shape-files, 26
Shared coupling, 209

Sheen, 170
Shrub class, 222
Sichuan Province, China, 126–131
Silent Spring, 3
Sill, interpolation, 240
Simulations, 57, see also Models and 

modeling
Sinarundinaria sp., 127–131
Sinton, D., 12, 13
Size, spatial concepts communication, 

305
Sky, as nature, 3
Slicks, 135, 170
Slivers, 232–233
Slope factors, 284
Slope stability model, 209
Small Is Beautiful, 4
Smallworld, 24
Smoke, 135, 137
Snow, John, 173–174
Social environment, 2
Sociocultural constructs, 24
Software services, 210
Soil Conservation Service (SCS), 162
Soils, 20, 22
Solution space, 4–5
Source-pathway characterization, case 

studies
 basin management planning, 158–169
 coastal oil spill modeling, 169–172
 fundamentals, 157–158
 modeling approaches, 149
Sources, 124, 148
South Dakota, 16
SpaCelle, 122
Spaceship Earth, 3
Spatial aggregation, 43
Spatial coexistence
 case studies, 150–157
 modeling approaches, 148–149
Spatial concepts, communication, 

304–307
Spatial database management system, 

13
Spatial data integration, 169
Spatial data quality, measurement, 

226–231
Spatial Data Transfer Standard (SDTS), 

259
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Spatial decision support systems (SDSS), 
302

 basin management planning, 158
 fundamentals, 299–304
 GIScience, 57–58
Spatial epidemiology, 174
Spatial pattern recognition, 173–174
Spatial phenomena representation, 

19–24
Spatio-temporal dimensions, 77–81
Specific risk, 103
Spills
 modeling, source-pathway 

characterization, 169–172
 preconditions, 187
 scale issues, 266
 transport through a medium, 

139–144
SPMS, 202
Spot, 93
Spreadsheets, 63
St. Venant equations, 163
Standardization, 199
State transition, 110
State variables, 109–110
Static computational models, 68
Statistical functionality, 47
Statistical techniques, 149
Steady state, subsystem, 128
Steepness of slope factors, 284
Steinitz, C., 12
STELLA software
 environmental modeling, 202
 lumped parameter models, 126
 transport through a medium, 

138–144
Stern Review, 1
Steven’s typology, 35–36
Stochastic models
 empirical models, 110–111
 environmental modeling, 203
 typology, 67
Structural knowledge, 203
Structured problems, 300
Sub-basin parameters, 162
Subjective judgment and context, 

223–224
Subsystems, tool coupling, 209–210
SUBTRACT function, 165, 167

Sun server, 220
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Surfer, 240
Survey Co-ordination Regulations, 227
Surveying, uncertainty, 216
Sustainable development, 99–101
Switzerland, 70
SYMAP, 12–13
Symbolic models, 67
Synaptic connections, 119
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Systems definition, 44, 46
Systems linking, 108

T

Taoist doctrine, 3
Technologies, 12, 14–18
Technologies, coupling issues
 de facto practices, 210–211
 embedded integration, 191–192
 environmental modeling with GIS, 

201–203
 fundamentals, 185
 independent integration, 190
 initial conceptualizations, 189–192
 integration vs. interoperability, 

198–201
 joined coupling, 209
 loose coupling, 207
 loosely coupled integration, 190
 maturing conceptualizations, 

197–207
 maturing typology, integration, 

207–210
 model management, 203, 206–207
 one-way data transfer, 207
 oversimplification of issues, 192–197
 preconditions, 186–188
 shared coupling, 209
 tightly coupled integration, 191
 tool coupling, 209–210
TeleGeoInformation, 42
Temporal variability, 221
Territorial Land Drainage and Flood 

Control Strategy Study, 160
Tessellations
 discretization, 132
 GPZ algorithm, 179
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 machine representation, 28–31
 spatial phenomena representation, 20
 vector comparison, 26
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Texas, 122
Texture, spatial concepts 

communication, 305
Thames Gateway, U.S., 18
The Human Impact Reader, 4
Theissen polygons
 GIS functionality, 43
 tessellations, 28, 29, 30
Thematic mapping, 44
THEN, 117–118
The Netherlands, 87
Third-order finite difference method, 

283
Three-dimensional (3D) pixels, 203
Three-population Schelling model
 agent-based models, 122, 123
 model structure issues, 288, 289
Tidal data, 139–144, 266
Tightly coupled integration, 191
Tiles, 23
Time, 230, 301
Timeline, historical developments, 15–16
Time step, 124
TIN, see Triangulated irregular 

networks (TIN)
Tool coupling, 209–210
TOPMODEL, 134
Topography
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 building models, 75–77
 data characteristics, 37
 spatial phenomena representation, 
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Topological overlay, 231–236
Topology, 26, 28, 30
Total risk, 103
Trade names and trademarks, xv
Trajectory model, 172, 266
Transactions in GIS, 5
Transformations, 43, 124
Transport, 124, 134–144
Triangular tessellations, 132
Triangulated irregular networks (TIN)
 algorithm issues, 278–281
 basin management planning, 161, 165
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 heuristics, 118
 preconditions, 187
 spatial coexistence, 153
 tessellations, 28–30
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Typology, models, 66–68
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UA, see Uncertainty analysis (UA)
U.K. Ordnance Survey, 227
Uncertainty
 data and information quality issues, 

213–217, 224–226
 defined, 215
 hierarchy of needs, 226
 model-induced, 263
 syntax and semantics, 54
Uncertainty, decision making
 advantages, 311–312
 communication, spatial concepts, 

304–307
 disadvantages, 312–313
 fundamentals, 297–299
 participatory planning, 307, 309–311
 spatial decision support systems, 

299–304
 Web-based participatory GIS, 307, 

309–311
Uncertainty analysis (UA), 256
Uniform patterns, 176
UNION
 fuzzy concepts, 242–243
 topological overlay, 232–235
United Kingdom, 170, 227
United States
 Exxon Valdez disaster, 4, 169–170
 landslides, 70
Universal Soil Loss Equation, 284
Unstable colluvial footslopes, 113
Urbanization, 158
U.S. Census Bureau, 12, 14

V

Validation, 81
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Value, spatial concepts communication, 
305

Value-neutrality, 304
Variogram, 240
Vector approaches
 basin management planning, 161
 machine representation, 26–28
 raster conversion, 229–230
 spatial phenomena representation, 23
 tessellation comparison, 26
Vegetation cover model, 207
Vegetation mapping, 221
Veregin’s hierarchy of needs, 226
Verification, 81
VGIS shell, 202
Village, 112, 224
Visual Basic
 embedded integration, 191
 integration vs. interoperability, 200
 quality analysis engine, 295
 shared coupling, 209
Visualization models, 56, 302
Visual variables, 305
Vocabulary, common, 199
Voxel structure, 203
Vulnerabilities, 101–104

W

Wales, 170
Warnings, 217–219, 234
Warntz, W., 12
Water quality model example, 87
Watershed, 193
Web-based participatory GIS, 307, 

309–311
“What if”-type queries and analysis
 basin management planning, 167, 169
 decision environment, 106
 spatial decision support systems, 301
White box computational models, 68
Wildfire hazard model example
 empirical models, 115, 116, 118
 inductive rules, 118

Windows, see Microsoft Windows
Wizards, procedural, 210
Woodland class, 222
World wide web (WWW), see also 

Internet
 basin flood events, 158
 case studies, 182–183
 community mapping, 309
 environmental impact assessment, 

94
 FRAGSTATS, 288
 GAM/K, 182
 geostatistical software, public 

domain, 294
 GIS and environmental simulation 

modeling, 182–183
 Global Positioning System 

manufacturers, 39
 hotspots, 175
 MAGIC, 183
 manmade slope failures, 102
 Open Geospatial Consortium, 200
 panda data, 128–129
 participatory planning initiative, 

310
 PCRaster, 182, 203
 remote sensing, 39–41
 spatial concepts communication, 

305
 STELLA software, 126
Wrappers, 201, 295
WWW, see World wide web (WWW)

X

x model, 64–66

Z

Zones
 GIS functionality, 43
 modeling approaches, 148
 scale issues, 271–273
Z-score, 306
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